Adipose stem cells in reparative goat mastitis mammary gland

Autoři: Clautina R. M. Costa aff001;  Matheus L. T. Feitosa aff001;  Andressa R. Rocha aff001;  Dayseanny O. Bezerra aff001;  Yulla K. C. Leite aff001;  Napoleão M. Argolo Neto aff001;  Huanna W. S. Rodrigues aff001;  Antônio Sousa Júnior aff002;  Adalberto S. Silva aff003;  José L. R. Sarmento aff001;  Lucilene S. Silva aff001;  Maria A. M. Carvalho aff001
Působiště autorů: Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil aff001;  Technical College of Teresina, Federal University of Piauí, Teresina, Brazil aff002;  Biology Department, Federal University of Piauí, Teresina, Piauí, Brazil aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223751


Mesenchymal stem cells have been widely used in the treatment of various chronic diseases. The objective of this survey was to evaluate the therapeutic and regenerative potential of stem cells from adipose tissue (ASCs) in the milk production recovery repair of tissue injury in mastitis goats treated with antimicrobial agents prior to cell therapy. After the diagnosis of mastitis and treatment with gentamicin, eight lactating goats were selected for cellular and subsequent therapy, physical-chemical analysis of milk, ultrasonographic and histopathological examinations. The ASCs were taken from the subcutaneous fat of a young goat cultivated in vitro, marked with Qdots-655 and injected in the left mammary gland, being the right mammary gland used as the control. After 30 days the ultrasonographic and histopathological analyzes were repeated and, in the first lactation period, the physical-chemical analysis of the milk was reapeated. Before the cellular therapy, the physical-chemical quality of the milk was compromised and the ultrasonographic and histopathological analysis revealed a chronic inflammatory process and fibrous tissue. The marking of the ASCs with Qdots enabled the tracking, by fluorescence microscopy (BX41-OLYMPUS), in the mammary tissue. In the ASCs therapy, cultures showed high cellularity and characteristics favorable to preclinical studies; with the therapy the physical-chemical parameters of the milk, fat, protein, temperature and pH showed significant differences among the groups; five animals treated with ASCs reconstituted the functionality of the gland and the connective tissue reduced in quantity and inflammatory infiltrate cells. ASCs have potential for the possible regeneration of fibrous mastitis lesions in the mammary gland, however, it would be necessary to increase injection time for the histopathological analysis, since the reconstitution of the glandular acini within the assessed period was not finalized. ASCs can be used to reestablish milk production in goat with chronic mastitis repair mammary lesions, with potential to be a promising clinical alternative for animal rehabilitation for productivity.

Klíčová slova:

Fats – Fibrosis – Goats – Inflammation – Mammary glands – Mastitis – Milk – Stem cell therapy


1. Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YRV, Fang SCY, et al. Stem Cell Therapy for Liver Disease: Parameters Governing the Success of Using Bone Marrow Mesenchymal Stem Cells. Gastroenterology. 2008; 134: 2111–21. doi: 10.1053/j.gastro.2008.03.015 18455168

2. Arnhold S, Wenisch S. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine. Am J Stem Cells. 2015; 4: 1–12. 25973326

3. Alnakip ME, Quintela-Baluja M, Bohme K, Fernandez-No I, Caamano-Antelo S, Calo-Mata P, et al. The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J Vet Med. 2014; 2014: 1–31.

4. Feliciano MAR, Oliveira MEF, Vicente WRC. Ultrassonografia na Reprodução Animal. Med Vet. 2013; 24.

5. López C, García JJ, Sierra M, Diez MJ, Pérez C, Sahagún AM, et al. Systemic and mammary gland disposition of enrofloxacin in healthy sheep following intramammary administration. BMC Vet Res. 2015; 11: 1–7. doi: 10.1186/s12917-014-0312-6

6. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007; 207: 267–74. doi: 10.1016/j.expneurol.2007.06.029 17761164

7. Lin G, Lin MG, Ning H, Banie L, Guo Y, Lue TF, et al. Defining Stem and Progenitor Cells within Adipose Tissue. Stem Cells Dev. 2008; 17: 1053–64. doi: 10.1089/scd.2008.0117 18597617

8. Tomita K, Madura T, Sakaia Y, Yano K, Terenghi G, Hosokawa K. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience. 2013; 236: 55–65. doi: 10.1016/j.neuroscience.2012.12.066 23370324

9. Hasegawa T, Sakamoto A, Wada A, Fukai T, Lida H, Ikeda S. Keratinocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One. 2015; 10: e0118402. doi: 10.1371/journal.pone.0118402 25714344

10. Hu R, Ling W, Xu W, Han D. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One. 2014; 9: e92676. doi: 10.1371/journal.pone.0092676 24664167

11. Sivan U, Jayakumar K, Krishnan LK. Constitution of fibrin-based niche for in vitro differentiation of adipose-derived mesenchymal stem cells to keratinocytes. Biores Open Access. 2014; 3: 339–47. doi: 10.1089/biores.2014.0036 25469318

12. Loebinger MR, Janes SN. Stem cell for lung disease. Chest. 2007; 132: 279–85. doi: 10.1378/chest.06-2751 17625088

13. Freitas ALP. Experimental model of obtaining tissue adipose, mesenchymal stem cells isolation and distribution in surgery flaps in rats. Acta Cir Bras. 2014; 29: 29–33.

14. Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells. 2011; April 26; 3: 25–33. doi: 10.4252/wjsc.v3.i4.25 21607134

15. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006; 24: 1294–301. doi: 10.1634/stemcells.2005-0342 16410387

16. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010; 77: 22–30. doi: 10.1002/cyto.a.20813 19852056

17. Ren Y, Wu H, Zhou X, Wen J, Jin M, Cang M, et al. Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res Vet Sci. 2012; 93: 404–11. doi: 10.1016/j.rvsc.2011.08.014 21945802

18. Di Marino AM, Caplan AI, Bonfield TL. Mesenchymal Stem Cells in Tissue Repair. Front Immunol. 2013; 4: 201. doi: 10.3389/fimmu.2013.00201 24027567

19. Alves EGL, Serakides R, Rosado IR, Boeloni JN, Ocarino NM, Rezende CMF. Isolamento e cultivo de Células Tronco Mesenquimais extraídas do tecido adiposo e da medula óssea de cães. Cienc Anim Bras. 2017; 18: 1–14.

20. Raposio E, Bertozzi N, Bonomini S, Bernuzzi G, Formentini A, Grignaffini E, et al. Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds. 2016; 28: 126–131. 27071140

21. Oh JH, Chung SW, Kim SH, Chung JY, Kim JY. Neer Award: Effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg. 2014; 22: 35–36.

22. Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y. Adipose-derived mesenchymal stem cell transtontation promotes adult neurogenesis in the brains of Alzheimer`s disease mice. Neural Regen Res. 2014; 9: 798–805. doi: 10.4103/1673-5374.131596 25206892

23. Schalm OW, Noorlander DD. Experiments and observations leading to developmentof the California Mastitis Test. J Am Vet Med Assoc.1957; 130: 199–204. 13416088

24. Quinn PJ, Carter ME, Markey B. Clinical veterinary microbiology. 1rd ed. London: Wolfe; 1994.

25. Bauer AW, Kirby WM, Sherris SC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966; 45: 493–96. 5325707

26. Camperio C, Armas F, Biasibetti E, Frassanito P, Giovannelli C, Spuria L et al. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain. PlosOne. 2017;12: 9.

27. Ribeiro SDA. Caprinocultura: criação racional de caprinos. São Paulo: Nobel, 1998. 318p

28. Caruana G, Bertozzi N, Boschi E, Pio Grieco M, Grignaffini E, Raposio E. Role of adipose-derived stem cells in chronic cutaneous wound healing. Ann Ital Chir. 2015; 86: 1–4. 25818696

29. Zuk PA, Zhu M, Ashjian P, Ugarte DAD, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotential stem cells. Mol Biol Cell. 2002; 13: 4279–95. doi: 10.1091/mbc.E02-02-0105 12475952

30. Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, et al. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci. 2018; 28: 336–344.

31. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The internacional society for Celular Therapy position statement. Cytotherapy. 2006; 8: 315–17. doi: 10.1080/14653240600855905 16923606

32. Carvalho AM, Alves ALG, Golim MA, Moroz A, Hussni CA, Oliveira PGG, et al. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Vet Immunol Immunopathol. 2009; 132: 303–06. doi: 10.1016/j.vetimm.2009.06.014 19647331

33. Bakopoulou A, Papachristou E, Bousnaki M, Hadjichristou C, Kontonasaki E, Theocharidou A, et al. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dent Mater. 2015; 32: 159–75.

34. Rambabu K, Makkena Sreenu RV, Suresh K, Rao TSC. Ultrasonography of the udder and teat in buffaloes. Buffalo Bull. 2009; 28: 5–10.

35. Foschiera J L. [Dairy industry, milk industrialization, analysis, dairy production.] Publisher: Suliani Editografia Ltda, Porto Alegre- RS, 2004.

36. Ogola H, Shitandi A, Nanua J. Effect of mastites on milk compositional quality. J Vet Sci. 2007; 8: 237–242. doi: 10.4142/jvs.2007.8.3.237 17679769

37. Leitner G, Chaffer M, Caraso Y, Ezra E, Kababea D, Winkler M, et al. Udder infection and milk somatic cell count, NAGase activity and milk composition—fat, protein and lactose- in Israeli-Assaf and Awassi sheep. Small Ruminant Research. 2003; 49: 157–164.

38. Zafalon LF, Nader Filho A, Carvalho MRB, Lima TMA. [Influence of bovine subclinical mastitis on protein fractions of milk.] Arq Inst Biol. 2008; 75: 135–140.

39. Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell. 2016; 48: 533–543. doi: 10.1016/j.tice.2016.06.010 27457384

40. Yamaguchi S, Shibata R, Yamamoto N, Nishikawa M, Hibi H, Tanigawa T, et al. Dental pulpderived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep. 2015; 5: 16295. doi: 10.1038/srep16295 26542315

41. Sang W, Ly B, Li K, Lu Y. Therapeutic efficacy and safety of umbilical cord mesenchymal stem cell transplantation for liver cirrhosis in Chinese population: A meta-analysis. Clin Res Hepatol Gastroenterol. 2018; 48:193–204.

42. Yu X, Ge S, Chen S, Xu Q, Zhang J, Guo H, et al. Human gingiva-derived mesenchymal stromal cells contribute to periodontal regeneration in beagle dogs. Cells Tissues Organs. 2013; 198: 428–437. doi: 10.1159/000360276 24777155

43. Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, et al. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl Med. 2015; 4: 1052–63. doi: 10.5966/sctm.2015-0039 26185258

44. Kajiguchi M, Kondo T, Izawa H, Kobayashi M, Yamamoto K, Shintani S, et al. Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J. 2007; 71: 196–201. doi: 10.1253/circj.71.196 17251666

45. Castro-Alonso A, Rodrigues F, De la Fé C, Espinosa de Los Monteros J, Poveda JB, Andrada M, Herráez P. Correlating the immune response with the clinical–pathological course of persistent mastitis experimentally induced by Mycoplasma agalactiae in dairy goats. Research in Veterinary Science. 2009; 86: 274–280. doi: 10.1016/j.rvsc.2008.06.004 18703207

46. Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: Causes and control. J Anim Sci. 2008; 86: 57–65.

47. El-Mahdy MM, Fatma MD, Omnia FHB, Eid RA. Pathological, bacteriological and parasitological studies on lymph nodes affections in cattle. Egypt J Comp & Clinic Path. 2002; 15: 47–67.

48. Thomas LH, Haider W, Hill AW, Cook RS. Pathologic findings of experimentally induced Streptococcus uberis infection in the mammary gland of cows. Am J Vet Res. 1994; 55: 1723–1728. 7887517

49. Barreira APB, Alves ALG, Salto ME, Arnorint RL, Kohayagawa A, Menarim BC, et al. Autologous Implant of Bone Marrow Mononuclear Cells as Treatment of Induced Equine Tendinitis. Intern. J Appl Res Vet Med. 2008; 6: 46–54.

50. Beheregaray WK, Gianotti GC, Oliveira F, Terraciano P, Bianchi S, Vidor S, et al. Mesenchymal stem cells applied to the inflammatory and proliferative phases of wound healing. Arq Bras Med Vet Zootec. 2017; 69: 1591–1600.

51. Blanpain C, Horsley V, Fuchs E. Epithelial Stem Cells: Turning over New Leaves. Cell. 2007; 28: 445–458.

52. Oliveira DM, Almeida BO, Marti LC, Sibov TT, Pavo LF, Malheiros DMAC, et al. Labeling of human mesenchymal stem cells with quantum dots allows tracking of transplanted cells engrafted in infarcted pig hearts. Einstein. 2009;7: 284–289.

53. Rosen AB, Kelly DJ, Schuldt AJT, Potapova IA, Doronin SV, Robichaud KJ, et al. Finding Fluorescent Needles in the Cardiac Haystack: Tracking Human Mesenchymal Stem Cells Labeled with Quantum Dots for Quantitative In Vivo Three-Dimensional Fluorescence Analysis. Stem Cell. 2007; 25: 2128–2138.

Článek vyšel v časopise


2019 Číslo 10