A relictual troglomorphic harvestman discovered in a volcanic cave of western Argentina: Otilioleptes marcelae, new genus, new species, and Otilioleptidae, new family (Arachnida, Opiliones, Gonyleptoidea)


Autoři: Luis E. Acosta aff001
Působiště autorů: Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica II, Córdoba, Argentina aff001;  Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223828

Souhrn

The troglomorphic harvestman Otilioleptes marcelae gen. nov., sp. nov. from the basaltic cave Doña Otilia, Payunia region, Mendoza Province, Argentina, is described. Its systematic affinities were studied through cladistic and Bayesian analyses that included representatives of Gonyleptoidea; it was determined to represent a new monotypic family, Otilioleptidae fam. nov., occupying a basal position within the clade Laminata. This species shows accentuated troglomorphic traits, typical for troglobitic harvestmen: elongated appendages, depigmentation, reduction of eyes and fading of scutal sulci. Additionally, it almost lacks sexual dimorphism, the distal portion of coxa IV is not completely fused to the stigmatic segment, and penis morphology is remarkably divergent with other Laminata; these features cannot be attributed to cave adaptation and may reflect early lineage divergence. Otilioleptes marcelae is the first troglobitic gonyleptoid known from a lava tube. The xeric environments around the cave (Patagonian ecoregion) and the paleoenvironmental history of the area suggest the relictual character of O. marcelae. Scattered evidence supports a long time evolutionary scenario and a presumable relationship with the Chilean opiliofauna (especially with genus Osornogyndes). A comparative overview of all known troglobitic gonyleptoids is provided. The urgent need to protect this new species and its unique cave environment is emphasized.

Klíčová slova:

Femur – Legs – Limestone – Phylogenetic analysis – Caves – Igneous geology – Volcanoes – Cladistics


Zdroje

1. White WB. 2005. Volcanic caves. In: Culver DC, White WB, eds. Encyclopedia of Caves. Elsevier, 599–602.

2. Culver DC, Pipan T. 2009. The biology of caves and other subterranean habitats. Oxford: Oxford University Press.

3. Maury EA. 1988. Triaenonychidae sudamericanos. V. Un nuevo género de Opiliones cavernícolas de la Patagonia (Opiliones, Laniatores). Mémoires de Biospéologie 15: 117–131.

4. Maury EA. 1986. Hallazgo aracnológico en cavernas del oeste argentino. Salamanca 2(2): 20–24.

5. Acosta LE. 2002. Patrones zoogeográficos de los opiliones argentinos (Arachnida: Opiliones). Revista Ibérica de Aracnología 6: 69–84.

6. Briggs TS. 1974. Troglobitic harvestmen recently discovered in North American lava tubes (Travuniidae, Erebomastridae, Triaenonychidae: Opiliones). The Journal of Arachnology 1: 205–214.

7. Ringuelet RA. 1957. Biogeografía de los arácnidos argentinos del Orden Opiliones. Contribuciones Científicas, Serie Zoología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 1(1): 1–33.

8. Ringuelet RA. 1959. Los arácnidos argentinos del Orden Opiliones. Revista del Museo Argentino de Ciencias Naturales, Ciencias Zoológicas 5(2): 127–439, Pl. I–XX.

9. Ringuelet RA. 1962. Un nuevo opilión de fauna de altura y observaciones sobre vinculaciones evolutivas en algunos Pachylinae (Arachnida). Revista de la Sociedad Entomológica Argentina 23(1–4): 1–6.

10. Ringuelet RA. 1978. Dinamismo histórico de la fauna brasílica en la Argentina. Ameghiniana 15(1–2): 255–262.

11. Maury EA, Roig Alsina AH. 1982. Sobre la presencia de Opiliones en las provincias argentinas de Mendoza y San Juan (Arachnida, Opiliones). Neotrópica 28(79): 39–40.

12. Maury EA, Roig Alsina AH. 1985. Triaenonychidae sudamericanos. I. El género Ceratomontia Roewer 1915 (Opiliones: Laniatores). Historia Natural 5(11): 77–92.

13. Benedetto C. 1999. Volcanic caves in Argentina. Proceedings of the IXth International Symposium on Vulcanospeleology, pp. 219–222.

14. Benedetto C, Peralta M. 2007. Observaciones sobre la ecología de la Cueva Doña Otilia (Malargüe, Mendoza, Argentina). I Congreso de la Federación Espeleológica de Puerto Rico (FEPUR)—V Congreso de la Federación Espeleológica de América Latina y del Caribe (FEALC), Aguadilla (Puerto Rico); Focus 6(1–2): 162–163.

15. Šilhavý V. 1974. A new subfamily of Gonyleptidae from Brazilian caves, Pachylospeleinae subf. n. (Opiliones, Gonyleptomorphi). Revue Suisse de Zoologie 81(4): 893–898.

16. Muñoz-Cuevas A. 1975. Phalangozea bordoni, nuevo género y especie de opiliones cavernícolas de Venezuela, de la familia Phalangodidae (Arachnida: Opilionida). Boletín de la Sociedad Venezolana de Espeleología 6(12): 87–94.

17. Pinto-da-Rocha R. 1996. Iandumoema uai, a new genus and species of troglobitic harvestman from Brazil (Arachnida, Opiliones, Gonyleptidae). Revista Brasileira de Zoologia 13(4): 843–848.

18. Pérez [González] A, Kury AB. 2002. A new remarkable troglomorphic gonyleptid from Brazil (Arachnida, Opiliones, Laniatores). Revista Ibérica de Aracnología 5: 43–50.

19. Kury AB, Pérez-González A. 2008. The first cave-dwelling Spinopilar Mello-Leitão 1940 (Opiliones Gonyleptidae Tricommatinae), described from a Brazilian cave. Tropical Zoology 21: 259–267.

20. Derkarabetian S, Steinmann DB, Hedin M. 2010. Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane western North America. PLoS ONE 5(5): e10388. doi: 10.1371/journal.pone.0010388 20479884

21. Pérez-González A, Ceccarelli FS, Monte BGO, Proud DN, DaSilva MB, Bichuette ME. 2017. Light from dark: A relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. PLoS ONE 12(11): e0187919. doi: 10.1371/journal.pone.0187919 29190302

22. Howarth FG. 1973. The cavernicolous fauna of Hawaiian lava tubes, 1. Introduction. Pacific Insects 15(1): 139–151.

23. Kury AB. 2014. Why does the Tricommatinae position bounce so much within Laniatores? A cladistic analysis, with description of a new family of Gonyleptoidea (Opiliones, Laniatores). Zoological Journal of the Linnean Society 172: 1–48.

24. Maury EA. 1993. Gonyleptidae (Opiliones) del bosque subantártico chileno-argentino. III. Descripción de Osornogyndes, nuevo género. Boletín de la Sociedad de Biología de Concepción 64: 99–104.

25. Kury AB, Villarreal M O. 2015. The prickly blade mapped: establishing homologies and a chaetotaxy for macrosetae of penis ventral plate in Gonyleptoidea (Arachnida, Opiliones, Laniatores). Zoological Journal of the Linnean Society 174: 1–46.

26. Sharma PP, Giribet G. 2011. The evolutionary and biogeographic history of the armoured harvestmen–Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25: 106–142.

27. Pinto-da-Rocha R., Bragagnolo C., Marques FPL, Antunes Junior M. 2014. Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones). Cladistics 30: 519–539. doi: 10.1111/cla.12065

28. Bragagnolo C, Hara MR, Pinto-da-Rocha R. 2015. A new family of Gonyleptoidea from South America (Opiliones, Laniatores). Zoological Journal of the Linnean Society 173: 296–319.

29. Mendes AC & Kury AB. 2012. Notes on the systematics of the Triaenonychinae from Madagascar with description of new species of Acumontia Loman (Opiliones: Laniatores). Zootaxa 3593: 40–58.

30. Pérez González A. 2006. Revisão sistemática e análise filogenética de Stygnommatidae (Arachnida, Opiliones). Ph. D. Thesis, Universidade Federal do Rio de Janeiro.

31. Cruz-López JA, Francke OF. 2013. Two new species of the genus Paramitraceras Pickard-Cambridge, 1905 (Opiliones: Laniatores: Stygnopsidae) from Chiapas, Mexico. Zootaxa 3641 (4): 481–490.

32. Pinto-da-Rocha R & Hara MR. 2009. New familial assignments for three species of Neotropical harvestmen based on cladistic analysis (Arachnida: Opiliones: Laniatores). Zootaxa 2241: 33–46.

33. Pinto-da-Rocha R. 1997. Systematic review of the Neotropical Family Stygnidae (Opiliones, Laniatores, Gonyleptoidea). Arquivos de Zoologia 33(4): 163–342.

34. Kury AB, Maury EA. 1998. A new genus and five new species of Metasarcinae from Peru (Arachnida, Opiliones, Gonyleptidae). Zoological Journal of the Linnean Society 123: 143–162.

35. Kury AB, Villarreal Manzanilla O, Sampaio C. 2007. Redescription of the type species of Cynorta (Arachnida, Opiliones, Cosmetidae). The Journal of Arachnology 35: 325–333.

36. Kury AB. 1997. The genera Saramacia and Syncranaus Roewer, with notes on the status of the Manaosbiidae (Opiliones, Laniatores, Gonyleptoidea). Boletim do Museu Nacional, Nova Série, Zoología (374): 1–22.

37. Kury AB. 2012. A new genus of Cranaidae from Ecuador (Opiliones: Laniatores). Zootaxa 3314: 31–44.

38. Hara MR, Pinto-da-Rocha R, Villarreal M. O. 2014. Revision of the cranaid genera Phalangodus, Iquitosa and Aguaytiella (Opiliones: Laniatores: Gonyleptoidea). Zootaxa 3814 (4): 567–580.

39. Villarreal M. O & Kury AB. 2012. Licornus Roewer, 1932: newly transferred to Ampycinae and first record of the family Gonyleptidae (Opiliones: Laniatores) from Venezuela. Zootaxa 3544: 71–78.

40. García AF. 2014. Primeros registros de Ampycinae Kury, 2003 (Opiliones, Gonyleptidae) en Colombia. Revista Ibérica de Aracnología 25: 93–95.

41. Acosta LE. 1989. Pachyloides hades, nueva especie de opilión de la Argentina (Opiliones, Gonyleptidae, Pachylinae). The Journal of Arachnology 17(1): 137–142.

42. DaSilva MB, Gnaspini P. 2009. A systematic revision of Goniosomatinae (Arachnida: Opiliones: Gonyleptidae), with a cladistic analysis and biogeographical notes. Invertebrate Systematics 23: 530–624.

43. Weber M. 1988. Die Phalangodidae—eine polyphyletische Familie der Gonyleptoidea? (Arachnida: Opiliones: Laniatores). Diplomarbeit (BSc thesis), Fakultät für Biologie, Universität Tübingen. Available at: http://www.mwspider.de/Publication/diplom.htm

44. Kury AB. 2003. A new species of Pherania Strand, 1942 from southern Brazil (Arachnida: Opiliones: Gonyleptidae). Zootaxa 363: 1–8.

45. Kury AB. 2002. A new genus of Tricommatinae from Eastern Brazil (Opiliones Laniatores Gonyleptidae). Tropical Zoology 15: 209–218.

46. Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786.

47. Goloboff PA. 1993. Estimating character weights during tree search. Cladistics 9: 83–91.

48. Nixon KC. 1999–2002. Winclada, ver. 1.00.08 Published by the author, Ithaca, NY, USA.

49. Bremer K. 1994. Branch support and tree stability. Cladistics 10: 295–304.

50. Lewis PO. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50(6): 913–925. doi: 10.1080/106351501753462876 12116640

51. Wright AM. 2019. A systematist’s guide to estimating Bayesian phylogenies from morphological data. Insect Systematics and Diversity 3(3): 2; 1–14. doi: 10.1093/isd/ixz006 31355348

52. Wright AM, Hillis DM. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9(10): e109210. doi: 10.1371/journal.pone.0109210 25279853

53. O’Reilly JE, Puttick MN, Pisani D, Donoghue PCJ. 2018. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology 61 (1): 105–118. doi: 10.1111/pala.12330 29398726

54. Sansom RS, Choate PG, Keating JN, Randle E. 2018. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters 14: 20180263. doi: 10.1098/rsbl.2018.0263 29925561

55. Goloboff PA, Torres A, Arias JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34(4): 407–437. doi: 10.1111/cla.12205

56. Goloboff PA, Pittman M, Pol D, Xu X. 2019. Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Systematic Biology 68(3): 494–504. doi: 10.1093/sysbio/syy077 30445627

57. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi: 10.1093/bioinformatics/btg180 12912839

58. Acosta LE, Pérez González A, Tourinho AL. 2007. Methods for taxonomic study. In: Pinto-da-Rocha R, Machado G, Giribet G, eds. Harvestmen: The Biology of Opiliones. Cambridge, Massachusetts: Harvard University Press, 494–505.

59. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood ECet al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51: 933–938. Shapefile “Terrestrial Ecoregions of the World—Version 2.0”, published 2004 by World Wildlife Fund; available at http://worldwildlife.org/publications/terrestrial-ecoregions-of-the-world

60. Giribet G, Vogt L, Pérez González A, Sharma P, Kury AB. 2010. A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26: 408–437.

61. Kury AB. 2009. Infraorder Grassatores. In: Kury AB(Ed.), Project Opilionomicon. Museu Nacional, Rio de Janeiro. Online at: http://www.museunacional.ufrj.br/mndi/ Aracnologia/Opilionomicon/Infraorder Grassatores.htm

62. Kury AB. 2015. Opiliones are no longer the same—on suprafamilial groups in harvestmen (Arthropoda: Arachnida). Zootaxa 3925 (3): 301–340. doi: 10.11646/zootaxa.3925.3.1 25781747

63. Kury AB. 2003. Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones). Revista Ibérica de Aracnología, Volumen especial monográfico 1: 5–337.

64. Llambías EJ, Bertotto GW, Risso C, Hernando I. 2010. El volcanismo cuaternario en el retroarco de Payenia: una revisión. Revista de la Asociación Geológica Argentina 67(2): 278–300.

65. Gudnason J, Holm PM, Søager N, Llambías EJ. 2012. Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. Journal of South American Earth Sciences 37: 191–201.

66. Søager N, Holm PM, Llambías EJ. 2013. Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chemical Geology 349–350: 36–53.

67. Hernando IR, Llambías EJ, González PD, Sato K. 2012. Volcanic stratigraphy and evidence of magma mixing in the Quaternary Payún Matrú volcano, Andean backarc in western Argentina. Andean Geology 39: 158–179.

68. Candia R, Puig S, Dalmasso E, Videla F, Martínez Carretero E. 1993. Diseño del plan de manejo para la Reserva Provincial La Payunia (Malargüe, Mendoza). Multequina 2: 5–87.

69. Norte F. 2000. Mapa climático de Mendoza. Catálogo de recursos humanos e información relacionada con la temática ambiental en la región andina argentina. Caracterización general y estudios temáticos por Provincia. Laboratorio de Desertificación y Ordenamiento Territorial. IADIZA. http://www.cricyt.edu.ar/ladyot/catalogo/cdandes/cap04.htm (accessed 20 May 2012).

70. Roig FA, Martínez Carretero E, Méndez E. 2000. Vegetación de la Provincia de Mendoza. Catálogo de recursos humanos e información relacionada con la temática ambiental en la región andina argentina. Caracterización general y estudios temáticos por Provincia. Laboratorio de Desertificación y Ordenamiento Territorial. IADIZA. http://www.cricyt.edu.ar/ladyot/catalogo/cdandes/cap04.htm (accessed 20 May 2012).

71. Paruelo JM, Golluscio RA, Jobbágy EG, Canevari M, Aguiar MR. 2005. Situación ambiental en la estepa patagónica. In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera J, eds. La situación ambiental argentina 2005. Buenos Aires: Fundación Vida Silvestre Argentina, 303–313.

72. Brojan M. 2000. Biología en Cueva Doña Otilia (Malargüe, Mendoza, Argentina). Spelaion 7: 55–58.

73. Mikkan R. 2014. Payunia, Campos Volcánicos Llancanelo y Payún Matrú: Patrimonio Mundial. Tiempo y Espacio 33: 31–47.

74. Gnaspini P. 1996. Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from south-eastern Brazil (Arachnida: Opiliones: Gonyleptidae). Journal of Zoology, London 239: 417–435.

75. Pinto-da-Rocha R. 1996. Description of the male of Daguerreia inermis Soares & Soares, with biological notes on population size in the Gruta da Lancinha, Paraná, Brazil (Arachnida, Opiliones, Gonyleptidae). Revista Brasileira de Zoologia 13(4): 833–842.

76. Machado G, Raimundo RLG, Oliveira PS. 2000. Daily activity schedule, gregariousness, and defensive behaviour in the Neotropical harvestman Goniosoma longipes (Opiliones: Gonyleptidae). Journal of Natural History 34: 587–596.

77. Santos FH, Gnaspini P. 2002. Notes on the foraging behavior of the Brazilian cave harvestman Goniosoma spelaeum (Opiliones, Gonyleptidae). The Journal of Arachnology 30: 177–180.

78. Gnaspini P, Hoenen S. 1999. Considerations about the troglophilic habit: the cave cricket model. Mémoirs de Biospéologie 26: 151–158.

79. Hara MR, Pinto-da-Rocha R. 2010. Systematic review and cladistic analysis of the genus Eusarcus Perty 1833 (Arachnida, Opiliones, Gonyleptidae). Zootaxa 2698: 1–136.

80. Hara MR, Pinto-Da-Rocha R. 2008. A new species of Brazilian troglobitic harvestman of the genus Iandumoema (Opiliones: Gonyleptidae). Zootaxa 1744: 50–58.

81. Pinto-da-Rocha R, Fonseca-Ferreira R, Bichuette ME. 2015. A new highly specialized cave harvestman from Brazil and the first blind species of the genus: Iandumoema smeagol sp. n. (Arachnida, Opiliones, Gonyleptidae). ZooKeys 537: 79–95.

82. Kury AB. 2008. Two new troglomorph Pachylinae (Opiliones, Laniatores, Gonyleptidae) from caves in Bahia, Brazil. Studies on Neotropical Fauna and Environment 43(3): 247–253.

83. Rambla M. 1978. Opiliones cavernícolas de Venezuela (Arachnida, Opiliones Laniatores). Speleon 24: 5–22.

84. Pinto-da-Rocha R. 1996. Notes on Vima insignis Hirst, 1912, revalidation of Trinella Goodnight & Goodnight, 1947 with description of three new species (Arachnida, Opiliones, Agoristenidae). Revista Brasileira de Entomologia 40(2): 315–323.

85. Lipps E, Austin J, Pérez González A. 2006. Observaciones biológicas en la “Cueva de los Murciélagos”. Vuelta de Obligado, provincia de Buenos Aires, República Argentina. In: Mérida E, Athor J, eds. Talares bonaerenses y su conservación. Buenos Aires: Fundación de Historia Natural “Félix de Azara”, 178–179.

86. Acosta LE. 2014. Bioclimatic profile and potential distribution of the Mesopotamian harvestman Discocyrtus testudineus (Holmberg, 1876) (Opiliones, Gonyleptidae). Zootaxa 3821(3): 301–320. doi: 10.11646/zootaxa.3821.3.1 24989746

87. Hedin M, Thomas SM. 2010. Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves. Molecular Phylogenetics and Evolution 54: 107–121. doi: 10.1016/j.ympev.2009.08.020 19699807

88. Wessel A, Erbe P, Hoch H. 2007. Pattern and process: Evolution of troglomorphy in the cave-planthopper of Australia and Hawaii–preliminary observations (Insecta: Hemiptera: Fulgoromorpha: Cixiidae). Acta Carsologica 36: 199–206.

89. Stone FD, Howarth FG, Hoch H, Asche M. 2005. Root communities in lava tubes. In: Culver DC, White WB, eds. Encyclopedia of Caves. Elsevier, 477–484.

90. Juberthie C, Delay B, Bouillon M. 1980. Extension du milieu souterrain en zone non-calcaire: description d´un noveau milieu et de son peuplement par les coleoptères troglobies. Mémoirs de Biospéologie 7: 19–52.

91. Ortiz-Jaureguizar E, Cladera GA. 2006. Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments 66: 498–532.

92. Barreda V, Palazzesi L. 2007. Patagonian vegetation turnovers during the Paleogene-Early Neogene: origin of arid-adapted floras. The Botanical Review 73: 31–50.

93. Iglesias A, Artabe AE, Morel EM. 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biological Journal of the Linnean Society 103: 409–422.

94. Palazzesi L, Barreda V. 2012. Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nature Communications 3: 1294. doi: 10.1038/ncomms2299 23250424

95. Barreda V, Anzótegui LM, Prieto AR, Aceñolaza P, Bianchi MM, Borromei AM et al. 2007. Diversificación y cambios de las angiospermas durante el Neógeno en Argentina. Asociación Paleontológica Argentina, Publicación Especial (Ameghiniana 50º aniversario) 11: 173–191.

96. Palazzesi L, Barreda V. 2007. Major vegetation trends in the Tertiary of Patagonia (Argentina): A qualitative paleoclimatic approach based on palynological evidence. Flora 202: 328–337.

97. Malumián N, Náñez C. 2011. The Late Cretaceous–Cenozoic transgressions in Patagonia and the Fuegian Andes: foraminifera, palaeoecology, and palaeogeography. Biological Journal of the Linnean Society 103: 269–288.

98. Hulka C, Gräfe K-U, Sames B, Uba CE, Heubeck C. 2006. Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. Journal of South American Earth Sciences 21: 135–150.

99. Hinojosa LF, Villagrán C. 1997. Historia de los bosques del sur de Sudamérica, I: Antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Revista Chilena de Historia Natural 70: 225–239.


Článek vyšel v časopise

PLOS One


2019 Číslo 10