Single-cell qPCR demonstrates that Repsox treatment changes cell fate from endoderm to neuroectoderm and disrupts epithelial-mesenchymal transition

Autoři: Qiuhong Li aff001;  Qingsong Huang aff001
Působiště autorů: School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China aff001;  South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223724


A definitive endodermal cell lineage is a prerequisite for the efficient generation of mature endoderm derivatives that give rise to organs, such as the pancreas and liver. We previously reported that the induction of mesenchymal definitive endoderm cells depends on autocrine TGF-β signaling and that pharmacological blockage of TGF-β signaling by Repsox disrupts endoderm specification. The definitive endoderm arises from a primitive streak, which depends largely on TGF-β signaling. If the TGF-β pathway is blocked by Repsox, cell fate after the primitive streak induction is so-far unknown. We report here, that an induced primitive streak cell-population contained many T/SOX2 co-expressing cells, and subsequent inhibition of TGF-β signaling by Repsox promoted neuroectodermal cell fate, which was characterized using single-cell qPCR analysis and immunostaining. The process of epithelial-to-mesenchymal transition, which is inherent to the process of definitive endoderm differentiation, was also disrupted upon Repsox treatment. Our findings may provide a new approach to produce neural progenitors.

Klíčová slova:

Cell differentiation – Enzyme-linked immunoassays – Gene expression – Mesoderm – Signal inhibition – TGF-beta signaling cascade – Endoderm – Autocrine signaling


1. Yiangou L, Ross ADB, Goh KJ, Vallier L. Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications. Cell Stem Cell. 2018;22(4):485–99. doi: 10.1016/j.stem.2018.03.016 29625066

2. Loh KM, Ang LT, Zhang J, Kumar V, Ang J, Auyeong JQ, et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell. 2014;14(2):237–52. doi: 10.1016/j.stem.2013.12.007 24412311

3. Loh KM, Chen A, Koh PW, Deng TZ, Sinha R, Tsai JM, et al. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell. 2016;166(2):451–67. doi: 10.1016/j.cell.2016.06.011 27419872

4. Bogacheva MS, Khan S, Kanninen LK, Yliperttula M, Leung AW, Lou YR. Differences in definitive endoderm induction approaches using growth factors and small molecules. J Cell Physiol. 2018;233(4):3578–89. doi: 10.1002/jcp.26214 29044512

5. D'amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41. doi: 10.1038/nbt1163 16258519

6. Li Q, Hutchins AP, Chen Y, Li S, Shan Y, Liao B, et al. A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun. 2017;815166.

7. Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell. 2009;17(3):365–76. doi: 10.1016/j.devcel.2009.08.002 19758561

8. Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development. 2015;142(17):2864–75. doi: 10.1242/dev.119768 26329597

9. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995;11(1):40–4. doi: 10.1038/ng0995-40 7550312

10. Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature. 2011;470(7334):394–8. doi: 10.1038/nature09729 21331042

11. Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, et al. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development. 2014;141(6):1209–21. doi: 10.1242/dev.101014 24595287

12. Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, Kim HS, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. 2010;6(2):270–81.

13. Liu J, Wang L, Su Z, Wu W, Cai X, Li D, et al. A reciprocal antagonism between miR-376c and TGF-beta signaling regulates neural differentiation of human pluripotent stem cells. FASEB J. 2014;28(11):4642–56. doi: 10.1096/fj.13-249342 25114173

14. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6. doi: 10.1038/371221a0 8078582

15. Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL, Fleming WH. BMP4 regulates the hematopoietic stem cell niche. Blood. 2009;114(20):4393–401. doi: 10.1182/blood-2009-02-206433 19759357

16. Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013;153(5):1149–63. doi: 10.1016/j.cell.2013.04.037 23664763

17. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell. 2011;9(2):144–55. doi: 10.1016/j.stem.2011.06.015 21816365

18. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26(5):1117–27. doi: 10.1634/stemcells.2007-1102 18292207

19. Lukovic D, Diez Lloret A, Stojkovic P, Rodriguez-Martinez D, Perez Arago MA, Rodriguez-Jimenez FJ, et al. Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Transl Med. 2017;6(4):1217–26. doi: 10.1002/sctm.16-0371 28213969

20. Noisa P, Raivio T, Cui W. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons. Stem Cells Int. 2015;2015647437.

21. Tao Y, Zhang SC. Neural Subtype Specification from Human Pluripotent Stem Cells. Cell Stem Cell. 2016;19(5):573–86. doi: 10.1016/j.stem.2016.10.015 27814479

22. Cheng X, Ying L, Lu L, Galvao AM, Mills JA, Lin HC, et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell. 2012;10(4):371–84. doi: 10.1016/j.stem.2012.02.024 22482503

23. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51(5):1754–65. doi: 10.1002/hep.23506 20301097

24. Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, et al. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep. 2018;22(8):2190–205. doi: 10.1016/j.celrep.2018.01.087 29466743

25. Chetty S, Pagliuca FW, Honore C, Kweudjeu A, Rezania A, Melton DA. A simple tool to improve pluripotent stem cell differentiation. Nat Methods. 2013;10(6):553–6. doi: 10.1038/nmeth.2442 23584186

26. Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell. 2013;13(4):492–505. doi: 10.1016/j.stem.2013.07.017 24035353

27. Moore FE, Garcia EG, Lobbardi R, Jain E, Tang Q, Moore JC, et al. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish. J Exp Med. 2016;213(6):979–92. doi: 10.1084/jem.20152013 27139488

28. Norrman K, Strombeck A, Semb H, Stahlberg A. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level. Methods. 2013;59(1):59–70. doi: 10.1016/j.ymeth.2012.03.030 22503774

29. Levak-Svajger B, Svajger A. Investigation on the origin of the definitive endoderm in the rat embryo. J Embryol Exp Morphol. 1974;32(2):445–59. 4463213

30. Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 2014;12(8):e1001937. doi: 10.1371/journal.pbio.1001937 25157815

31. Turner DA, Hayward PC, Baillie-Johnson P, Rue P, Broome R, Faunes F, et al. Wnt/beta-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development. 2014;141(22):4243–53. doi: 10.1242/dev.112979 25371361

32. Patani R, Compston A, Puddifoot CA, Wyllie DJ, Hardingham GE, Allen ND, et al. Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One. 2009;4(10):e7327. doi: 10.1371/journal.pone.0007327 19806200

33. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305. doi: 10.1002/hep.23354 19998274

34. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11(1):100–9. doi: 10.1016/j.stem.2012.05.018 22683203

Článek vyšel v časopise


2019 Číslo 10