Removal of anthracycline cytostatics from aquatic environment: Comparison of nanocrystalline titanium dioxide and decontamination agents


Autoři: Martin Šťastný aff001;  Václav Štengl aff001;  Irena Štenglová-Netíková aff002;  Michaela Šrámová-Slušná aff001;  Pavel Janoš aff003
Působiště autorů: Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic aff001;  1st Faculty of Medicine, Charles University in Prague, Ovocný trh, Czech Republic aff002;  Faculty of the Environment, J.E.Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223117

Souhrn

Anthracyclines are a class of pharmaceuticals used in cancer treatment have the potential to negatively impact the environment. To study the possibilities of anthracyclines (represented by pirarubicin and valrubicin) removal, chemical inactivation using NaOH (0.01 M) and NaClO (5%) as decontamination agents and adsorption to powdered nanocrystalline titanium dioxide (TiO2) were compared. The titanium dioxide (TiO2) nanoparticles were prepared via homogeneous precipitation of an aqueous solution of titanium (IV) oxy-sulfate (TiOSO4) at different amount (5–120 g) with urea. The as-prepared TiO2 samples were characterized by XRD, HRSEM and nitrogen physisorption. The adsorption process of anthracycline cytostatics was determined followed by high-performance liquid chromatography coupled with mass spectrometry (LC-MS) and an in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) technique. It was found that NaClO decomposes anthracyclines to form various transformation products (TPs). No TPs were identified after the reaction of valrubicin with a NaOH solution as well as in the presence of TiO2 nanoparticles. The best degree of removal, 100% of pirarubicin and 85% of valrubicin, has been achieved in a sample with 120 grams of TiOSO4 (TIT120) and TiO2 with 60 grams (TIT60), respectively.

Klíčová slova:

Adsorption – High performance liquid chromatography – Chemical precipitation – Liquid chromatography-mass spectrometry – Nanomaterials – Nanoparticles – Titanium – Cytostatics


Zdroje

1. Gestal JJ. Occupational hazards in hospitals: accidents, radiation, exposure to noxious chemicals, drug addiction and psychic problems, and assault. Occup Environ Med. 2008; doi: 10.1136/oem.44.8.510 3307896

2. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environ Sci Technol. 2012; doi: 10.1021/es203495d 22280472

3. Weissbrodt D, Kovalova L, Ort C, Pazhepurackel V, Moser R, Hollender J, et al. Mass flows of x-ray contrast media and cytostatics in hospital wastewater. Environ Sci Technol. 2009; doi: 10.1021/es8036725 19673269

4. Ciesielczyk F, Żółtowska-Aksamitowska S, Jankowska K, Zembrzuska J, Zdarta J, Jesionowski T. The role of novel lignosulfonate-based sorbent in a sorption mechanism of active pharmaceutical ingredient: batch adsorption tests and interaction study. Adsorption. 2019; doi: 10.1007/s10450-019-00106-5

5. Fraga TJM, Carvalho MN, Ghislandi MG, Motta Sobrinho MA da. FUNCTIONALIZED GRAPHENE-BASED MATERIALS AS INNOVATIVE ADSORBENTS OF ORGANIC POLLUTANTS: A CONCISE OVERVIEW. Brazilian J Chem Eng. 2019; doi: 10.1590/0104-6632.20190361s20180283

6. Gunture, Singh A, Bhati A, Khare P, Tripathi KM, Sonkar SK. Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Sci Rep. 2019; doi: 10.1038/s41598-019-38717-1 30792461

7. Shukla S, Khan I, Bajpai VK, Lee H, Kim T, Upadhyay A, et al. Sustainable Graphene Aerogel as an Ecofriendly Cell Growth Promoter and Highly Efficient Adsorbent for Histamine from Red Wine. ACS Appl Mater Interfaces. 2019; doi: 10.1021/acsami.9b02857 31025849

8. Sharma M, Joshi M, Nigam S, Shree S, Avasthi DK, Adelung R, et al. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem Eng J. 2019; doi: 10.1016/j.cej.2018.10.031

9. Gao Q, Xu J, Bu XH. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews. 2019. doi: 10.1016/j.ccr.2018.03.015

10. Petranovska AL, Abramov N V, Turanska SP, Gorbyk PP, Kaminskiy AN, Kusyak N V. Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J Nanostructure Chem. 2015;5: 275–285. doi: 10.1007/s40097-015-0159-9

11. Curry DE, Andrea KA, Carrier AJ, Nganou C, Scheller H, Yang D, et al. Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: Insights into removal of waterborne pharmaceuticals by TiO2nanoparticles. Environ Sci Nano. 2018; doi: 10.1039/c7en01171g

12. Lin HHH, Lin AYC, Hung CL. Photocatalytic oxidation of cytostatic drugs by microwave-treated N-doped TiO2 under visible light. J Chem Technol Biotechnol. 2015;90: 1345–1354. doi: 10.1002/jctb.4503

13. Lash BW, Gilman PB. Principles of Cytotoxic Chemotherapy. Cancer Immunother Immune Suppr Tumor Growth Second Ed. 2013; 167–185. doi: 10.1016/B978-0-12-394296-8.00012–9

14. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355: 1114–1123. doi: 10.1056/NEJMoa060829 16971718

15. Kosjek T, Heath E. Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC—Trends Anal Chem. 2011;30: 1065–1087. doi: 10.1016/j.trac.2011.04.007

16. Süle A, Süle A. Safety assessment and revision of a central cytostatic unit based on ESOP guidelines. Eur J Oncol Pharm. 2014;

17. Hansel S, Castegnaro M, Sportouch MH, De Méo M, Milhavet JC, Laget M, et al. Chemical degradation of wastes of antineoplastic agents: Cyclophosphamide, ifosfamide and melphalan. Int Arch Occup Environ Health. 1997;69: 109–114. doi: 10.1007/s004200050124 9001917

18. Castegnaro M, De Méo M, Laget M, Michelon J, Garren L, Sportouch MH, et al. Chemical degradation of wastes of antineoplastic agents. 2: Six anthracyclines: idarubicin, doxorubicin, epirubicin, pirarubicin, aclarubicin, and daunorubicin. Int Arch Occup Environ Health. 1997;70: 378–84. Available: http://www.ncbi.nlm.nih.gov/pubmed/9439983 doi: 10.1007/s004200050232 9439983

19. Queruau Lamerie T, Nussbaumer S, Décaudin B, Fleury-Souverain S, Goossens JF, Bonnabry P, et al. Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents. Ann Occup Hyg. 2013;57: 456–469. doi: 10.1093/annhyg/mes087 23223271

20. Xie H. Occurrence, Ecotoxicology, and Treatment of Anticancer Agents as Water Contaminants. J Env Anal Toxicol. 2012; doi: 10.4172/2161-0525.S2-002

21. Weber GF, Waxman DJ. Denitrosation of the Anti-Cancer Drug 1,3-Bis(2-chloroethyl)-1-nitrosourea Catalyzed by Microsomal Glutathione S-Transferase and Cytochrome P450 Monooxygenases. Arch Biochem Biophys. 1993;307: 369–378. doi: 10.1006/abbi.1993.1602 8274024

22. Kazner C, Lehnberg K, Kovalova L, Wintgens T, Melin T, Hollender J, et al. Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Sci Technol. 2008;58: 1699–1706. doi: 10.2166/wst.2008.542 19001728

23. Štenglova Netikova IR, Slušná M, Tolasz J, Št’Astný M, Popelka Š, Štengl V. A new possible way of anthracycline cytostatics decontamination. New J Chem. 2017;41. doi: 10.1039/c6nj03051c

24. Štenglová-Netíková IR, Petruželka L, Šťastný M, Štengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018;13: 1–15. doi: 10.1371/journal.pone.0193116 29534071

25. Netíková IRŠ, Petruželka L, Šťastný M, Štengl V. Safe decontamination of cytostatics from the nitrogen mustards family. Part one: Cyclophosphamide and ifosfamide. Int J Nanomedicine. 2018; doi: 10.2147/IJN.S159328 30538471

26. Zheng L, Chen J, Ma Z, Liu W, Yang F, Yang Z, et al. Capsaicin enhances anti-proliferation efficacy of pirarubicin via activating TRPV1 and inhibiting PCNA nuclear translocation in 5637 cells. Mol Med Rep. 2016; doi: 10.3892/mmr.2015.4623 26648574

27. Onrust S V., Lamb HM. Valrubicin. Drugs and Aging. 1999. doi: 10.2165/00002512-199915010-00006 10459733

28. Henych J, Štengl V, Slušná M, Matys Grygar T, Janoš P, Kuráň P, et al. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides. Appl Surf Sci. 2015;344: 9–16. doi: 10.1016/j.apsusc.2015.02.181

29. Šteng V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol. 2005;80: 754–758. doi: 10.1002/jctb.1218

30. Houǎková V, Štengl V, Bakardjieva S, Murafa N, Tyrpekl V. Photocatalytic properties of Ru-doped titania prepared by homogeneous hydrolysis. Cent Eur J Chem. 2009; doi: 10.2478/s11532-009-0019-x

31. Stenglová-Netíková IR, Petruzelka L, Stastny M, Stengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018; doi: 10.1371/journal.pone.0193116 29534071

32. Štengl V, Št’Astný M, Janoš P, Mazanec K, Perez-Diaz JLJL, Štenglová-Netíková IRIR. From the Decomposition of Chemical Warfare Agents to the Decontamination of Cytostatics. Ind Eng Chem Res. 2018;57: 2114–2122. doi: 10.1021/acs.iecr.7b04253

33. Stenglová-Netíková IR, Petruzelka L, Stastny M, Stengl V. Anthracycline antibiotics derivate mitoxantrone—Destructive sorption and photocatalytic degradation. PLoS One. 2018;13. doi: 10.1371/journal.pone.0193116 29534071

34. Holzwarth U, Gibson N. The Scherrer equation versus the “Debye-Scherrer equation.” Nat Nanotechnol. 2011;6: 534–534. doi: 10.1038/nnano.2011.145 21873991

35. Šťastný M, Tolasz J, Štengl V, Henych J, Žižka D. Graphene oxide/MnO2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media. Appl Surf Sci. 2017;412: 19–28. https://doi.org/10.1016/j.apsusc.2017.03.228

36. Štengl V, Grygar TM, Opluštil F, Němec T. Ge4+ doped TiO2 for stoichiometric degradation of warfare agents. J Hazard Mater. 2012; doi: 10.1016/j.jhazmat.2012.05.007 22640824

37. Štengl V, Houšková V, Murafa N, Bakardjieva S. Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants. Ceram—Silikaty. 2010;54: 368–378.

38. Štengl V, Bakardjieva S, Grygar TM, Bludská J, Kormunda M. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent J. 2013; doi: 10.1186/1752-153X-7-41 23445868

39. Štengl V, Velická J, Maříková M, Grygar TM. New generation photocatalysts: How tungsten influences the nanostructure and photocatalytic activity of TiO2 in the UV and visible regions. ACS Appl Mater Interfaces. 2011; doi: 10.1021/am2008757 21942469

40. Štengl V, Bludská J, Opluštil F, Němec T. Mesoporous titanium–manganese dioxide for sulphur mustard and soman decontamination. Mater Res Bull. 2011;46: 2050–2056. doi: 10.1016/j.materresbull.2011.07.003

41. Naderi M. Surface Area: Brunauer-Emmett-Teller (BET). Progress in Filtration and Separation. 2014. pp. 585–608. doi: 10.1016/B978-0-12-384746-1.00014–8

42. IUPAC. Recommendations for the characterization of porous solids. Pure Appl Chem. 1994;66: 1739–1758. doi: 10.1351/pac199466081739

43. McCready DE, Balmer M Lou, Keefer KD. Experimental and calculated X-ray powder diffraction data for cesium titanium silicate, CsTiSi2O6.5: A new zeolite. Powder Diffr. 1997; doi: 10.1017/S0885715600009416

44. Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A. Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Anal Lett. 2014;47: 1772–1782. doi: 10.1080/00032719.2014.880170

45. Štengl V, Šubrt J, Bezdička P, Maříková M, Bakardjieva S. Homogenous Precipitation with Urea–an Easy Process for Making Spherical Hydrous Metal Oxides. Solid State Phenom. 2003; doi: 10.4028/ www.scientific.net/SSP.90-91.121

46. Šteng V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol. 2005;80: 754–758. doi: 10.1002/jctb.1218

47. Daněk O, Štengl V, Bakardjieva S, Murafa N, Kalendová A, Opluštil F. Nanodispersive mixed oxides for destruction of warfare agents prepared by homogeneous hydrolysis with urea. J Phys Chem Solids. 2007;68: 707–711. doi: 10.1016/j.jpcs.2007.01.044

48. Derksen JJ. Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 2012; doi: 10.1002/aic.12669

49. Robert J, David M, Huet S, Chauvergne J. Pharmacokinetics and metabolism of pirarubicin in advanced cancer patients. Eur J Cancer Clin Oncol. 1988;24: 1289–1294. doi: 10.1016/0277-5379(88)90217-9 3181250

50. Cong W, Liang Q, Li L, Shi J, Liu Q, Feng Y, et al. Metabonomic study on the cumulative cardiotoxicity of a pirarubicin liposome powder. Talanta. 2012;89: 91–98. doi: 10.1016/j.talanta.2011.11.071 22284464

51. Ibsen S, Zahavy E, Wrasdilo W, Berns M, Chan M, Esener S. A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res. 2010; doi: 10.1007/s11095-010-0183-x 20596761

52. Nazari B, Jaafari M. A new method for the synthesis of MgO nanoparticles for the destructive adsorption of organo-phosphorus compounds. Dig J Nanomater Biostructures. 2010;

53. Bisio C, Carniato F, Palumbo C, Safronyuk SL, Starodub MF, Katsev AM, et al. Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catal Today. 2016; doi: 10.1016/j.cattod.2016.08.014

54. Zafrani Y, Goldvaser M, Dagan S, Feldberg L, Mizrahi D, Waysbort D, et al. Degradation of sulfur mustard on KF/Al2O3 supports: Insights into the products and the reactions mechanisms. J Org Chem. 2009; doi: 10.1021/jo901713c 19817399

55. Karmakar S, Maji M, Mukherjee A. Modulation of the reactivity of nitrogen mustards by metal complexation: Approaches to modify their therapeutic properties. Dalton Transactions. 2019. doi: 10.1039/c8dt04503h 30629051

56. Barick KC, Nigam S, Bahadur D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J Mater Chem. 2010; doi: 10.1039/c0jm00022a

57. Chao CS, Liu KH, Tung WL, Chen SY, Liu DM, Chang YP. Bioactive TiO2 ultrathin film with worm-like mesoporosity for controlled drug delivery. Microporous Mesoporous Mater. 2012; doi: 10.1016/j.micromeso.2011.12.005

58. Heredia-Cervera BE, González-Azcorra SA, Rodríguez-Gattorno G, López T, Ortiz-Islas E, Oskam G. Controlled release of phenytoin from nanostructured TiO2reservoirs. Sci Adv Mater. 2009; doi: 10.1166/sam.2009.1009

59. Huang P, Wang J, Lai S, Liu F, Ni N, Cao Q, et al. Surface modified titania nanotubes containing anti-bacterial drugs for controlled delivery nanosystems with high bioactivity. J Mater Chem B. 2014; doi: 10.1039/c4tb01281j

60. Mund R, Panda N, Nimesh S, Biswas A. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells. J Nanoparticle Res. 2014; doi: 10.1007/s11051-014-2739-x

61. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small. 2007; doi: 10.1002/smll.200700412 17935080

62. Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim Acta. 2010; doi: 10.1016/j.electacta.2009.12.053

63. Gulati K, Kant K, Findlay D, Losic D. Periodically tailored titania nanotubes for enhanced drug loading and releasing performances. J Mater Chem B. 2015; doi: 10.1039/c4tb01882f

64. Ren W, Zeng L, Shen Z, Xiang L, Gong A, Zhang J, et al. Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. RSC Adv. 2013; doi: 10.1039/c3ra42863j

65. Qin Y, Sun L, Li X, Cao Q, Wang H, Tang X, et al. Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: Effect of loading mode on therapeutic efficacy. J Mater Chem. 2011; doi: 10.1039/c1jm13615a

66. Lin L, Jiang W, Bechelany M, Nasr M, Jarvis J, Schaub T, et al. Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere. 2019; doi: 10.1016/j.chemosphere.2018.12.184

67. Tanveer M, Guyer GT, Abbas G. Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation. Water Environ Res. 2019;91: 822–829. doi: 10.1002/wer.1104 30884028

68. Galkina OL, Önneby K, Huang P, Ivanov VK, Agafonov A V., Seisenbaeva GA, et al. Antibacterial and photochemical properties of cellulose nanofiber-titania nanocomposites loaded with two different types of antibiotic medicines. J Mater Chem B. 2015; doi: 10.1039/c5tb01382h

69. Zhang Y, He F, Sun Z, Li L, Huang Y. Controlled delivery of dexamethasone from TiO2 film with nanoporous structure on Ti-25Nb-3Mo-2Sn-3Zr biomedical alloy without polymeric carrier. Mater Lett. 2014; doi: 10.1016/j.matlet.2013.11.103 24563566

70. Curry DE, Andrea KA, Carrier AJ, Nganou C, Scheller H, Yang D, et al. Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles. Environ Sci Nano. 2018;5: 1027–1035. doi: 10.1039/C7EN01171G

71. Belatik A, Hotchandani S, Bariyanga J, Tajmir-Riahi HA. Binding sites of retinol and retinoic acid with serum albumins. Eur J Med Chem. 2012; doi: 10.1016/j.ejmech.2011.12.002 22197381

72. Zhang G, Que Q, Pan J, Guo J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J Mol Struct. 2008; doi: 10.1016/j.molstruc.2007.09.002

73. Kumar R, Gokulakrishnan N, Kumar R, Krishna VM, Saravanan A, Supriya S, et al. Can Be a Bimetal Oxide ZnO—MgO Nanoparticles Anticancer Drug Carrier and Deliver? Doxorubicin Adsorption/Release Study. J Nanosci Nanotechnol. 2015;15: 1543–1553. doi: 10.1166/jnn.2015.8915 26353689

74. Stumm W. Transition metal oxides: surface chemistry and catalysis. Adv Colloid Interface Sci. 2002; doi: 10.1016/0001-8686(91)80024-e


Článek vyšel v časopise

PLOS One


2019 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Léčba bolesti v ordinaci praktického lékaře
nový kurz
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Léčba akutní pooperační bolesti
Autoři: doc. MUDr. Jiří Málek, CSc.

Nové antipsychotikum kariprazin v léčbě schizofrenie
Autoři: prof. MUDr. Cyril Höschl, DrSc., FRCPsych.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se