Horizontal seed dispersal by dung beetles reduced seed and seedling clumping, but did not increase short-term seedling establishment


Autoři: Lina Adonay Urrea-Galeano aff001;  Ellen Andresen aff001;  Rosamond Coates aff003;  Francisco Mora Ardila aff001;  Alfonso Díaz Rojas aff004;  Gabriel Ramos-Fernández aff005
Působiště autorů: Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico aff001;  Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico aff002;  Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, Veracruz, Mexico aff003;  Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico aff004;  Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224366

Souhrn

Dung beetles are secondary seed dispersers, incidentally moving many of the seeds defecated by mammals vertically (seed burial) and/or horizontally as they process and relocate dung. Although several studies have quantified this ecological function of dung beetles, very few have followed seed fate until seedling establishment, and most of these have focused on the effects of seed burial. We know very little about the effects of horizontal seed movement by dung beetles, though it is generally assumed that it will affect plant recruitment positively through diminishing seed clumping. The objective of our study was to assess the effects of dung beetle activity on the spatial distribution of seeds and seedlings, and on the probability of seedling establishment. In a tropical rainforest in Mexico we carried out two complementary field experiments for each of two tree species (Bursera simaruba and Poulsenia armata), using seeds experimentally imbedded in pig dung and recording their fate and spatial location over time. For both species, dung beetle activity reduced the spatial clumping of seeds and seedlings; however, it did not increase the probability of seedling establishment. We discuss the context- and species-specificity of the combined effects of horizontal and vertical dispersal of seeds by dung beetles, and the need to quantify long-term seedling fates to more accurately determine the effects of seed movement by dung beetles on plant recruitment.

Klíčová slova:

Beetles – Mammals – Metadata – Plants – Seed germination – Seedlings – Seeds – Dung beetles


Zdroje

1. Wang BC, Smith TB. Closing the seed dispersal loop. Trends Ecol Evol. 2002;17: 379–385.

2. Forget P-M, Lambert JE, Hulme PE, Vander Wall SB, editors. Seed fate: predation, dispersal and seedling establishment. Wallingford: CABI Publishing; 2005.

3. Vander Wall SB, Longland WS. Diplochory: are two seed dispersers better than one? Trends Ecol Evol. 2004;19: 155–161. doi: 10.1016/j.tree.2003.12.004 16701247

4. Vander Wall SB, Kuhn KM, Beck MJ. Seed removal, seed predation, and secondary dispersal. Ecology. 2005;86: 801–806.

5. Fleming TH, Kress WJ. The ornaments of life: coevolution and conservation in the tropics. Chicago: The University of Chicago Press; 2013.

6. Jordano P. Fruits and frugivory. In: Gallagher RS, editor. Seeds: the ecology of regeneration in plant communities. Wallingford: CABI Publishing; 2014. pp. 18–61.

7. Andresen E, Feer F. The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In: Forget P-M, Lambert JE, Hulme PE, Vander Wall SB, editors. Seed fate: predation, dispersal and seedling establishment. Wallingford: CABI Publishing; 2005. pp. 331–349.

8. Culot L, Huynen M-C, Heymann EW. Primates and dung beetles: two dispersers are better than one in secondary forest. Int J Primatol. 2018;39: 397–414.

9. Halfter G, Edmonds WD. The nesting behavior of dung beetles (Scarabaeinae): an ecological and evolutive approach. Ciudad de México: Man and the Biosphere Program UNESCO; 1982.

10. Hanski I, Cambefort Y. Dung beetle ecology. Princeton: Princeton University Press; 1991.

11. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv. 2008;141: 1461–1474.

12. Andresen E, Levey DJ. Effects of dung and seed size on secondary dispersal, seed predation, and seedling establishment of rain forest trees. Oecologia. 2004;139: 45–54. doi: 10.1007/s00442-003-1480-4 14740290

13. Griffiths HM, Bardgett RD, Louzada J, Barlow J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc R Soc B. 2016;283: 20161634. doi: 10.1098/rspb.2016.1634 27928036

14. Estrada E, Coates-Estrada R. Howler monkeys (Alouatta palliata), dung beetles (Scarabaeidae) and seed dispersal: ecological interactions in the tropical rain forest of Los Tuxtlas, Mexico. J Trop Ecol. 1991;7: 459–474.

15. Shepherd VE, Chapman CA. Dung beetles as secondary seed dispersers: impact on seed predation and germination. J Trop Ecol. 1998;14: 199–215.

16. Santos-Heredia C, Andresen E, Zárate DA. Secondary seed dispersal by dung beetles in a Colombian rain forest: effects of dung type and defecation pattern on seed fate. J Trop Ecol. 2010;26: 355–364.

17. Andresen E. Effects of dung presence, dung amount and secondary dispersal by dung beetles on the fate of Micropholis guyanensis (Sapotaceae) seeds in Central Amazonia. J Trop Ecol. 2001;17: 61–78.

18. Culot L, Huynen M-C, Heymann EW. Partitioning the relative contribution of one-phase and two-phase seed dispersal when evaluating seed dispersal effectiveness. Methods Ecol Evol. 2015;6: 178–186.

19. Feer F. Effects of dung beetles (Scarabaeidae) on seeds dispersed by howler monkeys (Alouatta seniculus) in the French Guianan rain forest. J Trop Ecol. 1999;15: 129–142.

20. Lawson CR, Mann DJ, Lewis OT. Dung beetles reduce clustering of tropical tree seedlings. Biotropica. 2012;44: 271–275.

21. Andresen E. Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecol Entomol. 2002;27: 257–270.

22. Ponce-Santizo G, Andresen E, Cano E, Cuarón AD. Dispersión primaria de semillas por primates y dispersión secundaria por escarabajos coprófagos en Tikal, Guatemala. Biotropica. 2006;38: 390–397.

23. Leck MA, Parker VT, Simpson RL, editors. Seedling ecology and evolution. Cambridge: Cambridge University Press; 2008.

24. Gallagher RS, editor. Seeds: the ecology of regeneration in plant communities. 3er ed. Wallingford: CABI Publishing; 2014.

25. Conanp (Comisión Nacional de Áreas Naturales Protegidas). Programa de conservación y manejo Reserva de la Biosfera Los Tuxtlas. Ciudad de México: Salinas Impresores; 2006.

26. Gutiérrez-García G, Ricker M. Climate and climate change in the region of Los Tuxtlas (Veracruz, Mexico): a statistical analysis. Atmósfera. 2011;24: 347–373.

27. Favila ME, Díaz A. Escarabajos coprófagos y necrófagos. In: González Soriano E, Dirzo R, Vogt RC, editors. Historia natural de Los Tuxtlas. Ciudad de México: Universidad Nacional Autónoma de México. Instituto de Biología. Instituto de Ecología; 1997. pp. 383–384.

28. Coates R, Ramírez-Lucho I, González-Christen A. Una lista actualizada de los murciélagos de la región de Los Tuxtlas, Veracruz. Rev Mex Biodivers. 2017;88: 349–357.

29. González-Christen A, Coates R. Los mamíferos no voladores de la región de Los Tuxtlas, Veracruz, México. Rev Mex Biodivers. 2019;90: e902580.

30. Flores J., Coates RI, Sánchez-Cordero V, Mendieta VJ. Mamíferos terrestres de la Estación de Biología Tropical de Los Tuxtlas. Rev Digit Univ. 2014;15: 1–10.

31. Dirzo R, Sinaca S. Bursera simaruba. In: González Soriano E, Dirzo R, Vogt RC, editors. Historia natural de Los Tuxtlas. Ciudad de México: Universidad Nacional Autónoma de México. Instituto de Biología. Instituto de Ecología; 1997. pp. 101–102.

32. Ibarra-Manríquez G, Martínez-Morales M, Cornejo-Tenorio G. Frutos y semillas del bosque tropical perennifolio: región de Los Tuxtlas, Veracruz. Ciudad de México: Conabio; 2015.

33. Urrea-Galeano LA, Andresen E, Coates R, Mora Ardila F, Ibarra-Manríquez G. Dung beetle activity affects rain forest seed bank dynamics and seedling establishment. Biotropica. 2019;51: 186–195.

34. Ibarra-Manríquez G, Sinaca Colín S. Estación de biología tropical “Los Tuxtlas”, Veracruz, México: lista florística comentada (Mimosaceae a Verbenaceae). Rev Biol Trop. 1996;44: 41–60.

35. Martínez-Garza C, Peña V, Ricker M, Campo A, Howe HF. Restoring tropical biodiversity: leaf traits predict growth and survival of late-successional trees in early-successional environments. For Ecol Manage. 2005;217: 365–379.

36. Vozzo JA, editor. Tropical tree seed manual. Washington DC: USDA Forest Service; 2002.

37. Marsh CJ, Louzada J, Beiroz W, Ewers RM. Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae). PLoS One. 2013;8: e73147. doi: 10.1371/journal.pone.0073147 24023675

38. Julliot C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. Int J Primatol. 1996;17: 239–258.

39. Bueno RS, Guevara R, Ribeiro MC, Culot L, Bufalo FS, Galetti M. Functional redundancy and complementarities of seed dispersal by the last Neotropical megafrugivores. PLoS One. 2013;28: e56252.

40. Julliot C, Simmen B, Zhang S. Frugivory and seed dispersal by three Neotropical primates: impact on plant regeneration. In: Bongers F, Charles-Dominique P, Forget P-M, Théry M, editors. Nouragues: dynamics and plant-animal interactions in a Neotropical rainforest. Dordrecht: Kluwer Academic Publishers; 2001. pp. 197–205.

41. Andresen E. Primary seed dispersal by red howler monkeys and the effect of defecation patterns on the fate of dispersed seeds. Biotropica. 2002;34: 261–272.

42. Estrada A, Halffter G, Coates-Estrada R, Meritt DA Jr. Dung beetles attracted to mammalian herbivore (Alouatta palliata) and omnivore (Nasua narica) dung in the tropical rain forest of Los Tuxtlas, Mexico. J Trop Ecol. 1993;9: 45–54.

43. Clark PJ, Evans FC. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology. 1954;35: 445–453.

44. Bolker B. Linear and generalized linear mixed models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ, editors. Ecological statistics: contemporary theory and application. Oxford: Oxford University Press; 2015. pp. 309–333.

45. Austin PC. A tutorial on multilevel survival analysis: methods, models and applications. Int Stat Rev. 2017;85: 185–203. doi: 10.1111/insr.12214 29307954

46. Onofri A, Gresta F, Tei F. A new method for the analysis of germination and emergence data of weed species. Weed Res. 2010;50: 187–198.

47. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

48. Baddeley A, Turner R. spatstat: an R package for analyzing spatial point patterns. J Stat Softw. 2005;12: 1–42.

49. Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48.

50. Therneau TM. coxme: Mixed Effects Cox Models. R package version 2.2–14. https://cran.r-project.org/package=coxme. 2019.

51. Fox J, Weisberg S. An R companion to applied regression. Thousand Oaks: SAGE Publications; 2011.

52. Lenth R. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.2. https://cran.r-project.org/package=emmeans. 2019.

53. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57: 289–300.

54. Jafari M, Ansari-Pour N. Why, when and how to adjust your p values? Cell J. 2019;20: 604–607. doi: 10.22074/cellj.2019.5992 30124010

55. Ocampo-Castillo J, Andresen E. Interacciones entre semillas y escarabajos del estiércol (Scarabaeinae) en un bosque tropical seco. TIP Rev Espec en Ciencias Químico-Biológicas. 2018;21: 24–33.

56. Lugon AP, Boutefeu M, Bovy E, Vaz-de-Mello FZ, Huynen M-C, Galetti M, et al. Persistence of the effect of frugivore identity on post-dispersal seed fate: consequences for the assessment of functional redundancy. Biotropica. 2017;49: 293–302.

57. Gripenberg S, Bagchi R, Gallery RE, Freckleton RP, Narayan L, Lewis OT. Testing for enemy-mediated density-dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos. 2014;123: 185–193.

58. Crawley MJ. Seed predators and plant population dynamics. In: Gallagher RS, editor. Seeds: the ecology of regeneration in plant communities. Wallingford: CABI Publishing; 2014. pp. 94–110.

59. Andresen E. Seed dispersal by monkeys and the fate of dispersed seeds in a Peruvian rain forest. Biotropica. 1999;31: 145–158.

60. Braga RF, Carvalho R, Andresen E, Anjos DV, Alves-Silva E, Louzada J. Quantification of four different post-dispersal seed deposition patterns after dung beetle activity. J Trop Ecol. 2017;33: 407–410.

61. del Amo S, Gómez-Pompa A. Crecimiento de estados juveniles de plantas en selva tropical húmeda. In: Gómez-Pompa A, del Amo S, Vásquez-Yanes C, editors. Investigaciones sobre la regeneración de selvas altas en Veracruz, México. Ciudad de México: Continental; 1976. pp. 549–565.

62. Traveset A, Robertson AW, Rodríguez-Pérez J. A review on the role of endozoochory in seed germination. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA, editors. Seed dispersal: theory and its application in a changing world. Wallingford: CABI Publishing; 2007. pp. 78–103.

63. Milotić T, Hoffmann M. Reduced germination success of temperate grassland seeds sown in dung: consequences for post‐dispersal seed fate. Plant Biol. 2016;18: 1038–1047. doi: 10.1111/plb.12506 27617427

64. Kitajima K. Cotyledon functional morphology, patterns of seed reserve utilization and regeneration niches of tropical tree seedlings. In: Swaine MD, editor. The ecology of tropical forest tree seedlings. Paris: UNESCO and the Parthenon Publishing Group; 1996. pp. 193–210.

65. Ibarra-Manríquez G, Martínez Ramos M, Oyama K. Seedling functional types in a lowland rain forest in Mexico. Am J Bot. 2001;88: 1801–1812. 21669613


Článek vyšel v časopise

PLOS One


2019 Číslo 10