Exploring the antimicrobial properties of dark-operating ceramic-based nanocomposite materials for the disinfection of indoor air

Autoři: Aliénor Dutheil de la Rochère aff001;  Alexeï Evstratov aff001;  Sandrine Bayle aff002;  Lionel Sabourin aff001;  Arnaud Frering aff001;  José-Marie Lopez-Cuesta aff001
Působiště autorů: Centre des Matériaux des Mines d’Alès, IMT-Mines Alès, Alès, France aff001;  Laboratoire de Génie de l’Environnement Industriel, IMT-Mines-Alès, Alès, France aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224114


As people spend more and more time inside, the quality of indoor air becomes crucial matter. This study explores the germicidal potential of two dark-operating germicidal composite materials designed to be applied for the indoor air disinfection under flow conditions. The first material, MnO2/AlPO4/γ-Al2O3 beads, is a donor-acceptor interactive composite capable of creating hydroxyl radicals HO∙. The second one is a ZnO/γ-Al2O3 material with intercropped hexagons on its surface. To determine the antimicrobial efficiency of these materials in life-like conditions, a pilot device was constructed that allows the test of the materials in dynamic conditions and agar diffusion inhibitory tests were also conducted. The results of the tests showed that the MnO2/AlPO4/γ-Al2O3 material has a germicidal effect in static conditions whereas ZnO/γ-Al2O3 does not. In dynamic conditions, the oxidizing MnO2/AlPO4/γ-Al2O3 material is the most efficient when using low air speed whereas the ZnO/γ-Al2O3 one becomes more efficient than the other materials when increasing the air linear speed. This ZnO/γ-Al2O3 dark-operating germicidal material manifests the ability to proceed the mechanical destruction of bacterial cells. Actually, the antimicrobial efficiency of materials in dynamic conditions varies regarding the air speed through the materials and that static tests are not representative of the behavior of the material for air disinfection. Depending on the conditions, the best strategy to inactivate microorganisms changes and abrasive structures are a field that needs further exploration as they are in most of the conditions tested the best way to quickly decrease the number of microorganisms.

Klíčová slova:

Air flow – Composite materials – Hydroxyl radicals – Manganese – Polyvinyl chloride – Reactive oxygen species – Scanning electron microscopy – Zinc


1. National Research Council. Indoor Pollutants [Internet]. 1981 [cited 2018 Mar 7]. Available from: https://www.nap.edu/catalog/1711/indoor-pollutants

2. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001 Jun;11(3):231–52. doi: 10.1038/sj.jea.7500165 11477521

3. Balikhin IL, Berestenko VI, Domashnev IA, Kabatchkov EN, Kurkin EN, Troitski VN, et al. Photocatalytic Recyclers for Purification and Disinfection of Indoor Air in Medical Institutions. Biomed Eng. 2016 Mar 1;49(6):389–93.

4. Goswami DY, Trivedi DM, Block SS. Photocatalytic Disinfection of Indoor Air. J Sol Energy Eng. 1997 Feb 1;119(1):92–6.

5. Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters. 1985 Aug 1;29(1):211–4.

6. Chong MN, Jin B, Saint CP. Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chemical Engineering Journal. 2011 Jun 15;171(1):16–23.

7. Watts RJ, Kong S, Orr MP, Miller GC, Henry BE. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Research. 1995 Jan 1;29(1):95–100.

8. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials [Internet]. Evidence-Based Complementary and Alternative Medicine. 2015 [cited 2018 Mar 7]. Available from: https://www.hindawi.com/journals/ecam/2015/246012/

9. Saleh NB, Afrooz ARMN, Bisesi JH, Aich N, Plazas-Tuttle J, Sabo-Attwood T. Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems. Nanomaterials (Basel). 2014 Jun 3;4(2):372–407.

10. Miller D. Abrasion effects on microbes in sandy sediments. Marine Ecology Progress Series. 1989;55:73–82.

11. Jones CA, Padula NL, Setlow P. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J Appl Microbiol. 2005;99(6):1484–94. doi: 10.1111/j.1365-2672.2005.02744.x 16313421

12. Yılmaz Atay H, Çelik E. Investigations of antibacterial activity of chitosan in the polymeric composite coatings. Progress in Organic Coatings. 2017 Jan;102, Part B:194–200.

13. Campos MD, Zucchi PC, Phung A, Leonard SN, Hirsch EB. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized. PLOS ONE. 2016 Aug 5;11(8):e0160728. doi: 10.1371/journal.pone.0160728 27494336

14. Miaśkiewicz-Pęska EB, Łebkowska M. Effect of Antimicrobial Air Filter Treatment on Bacterial Survival. Fibres Text East Eur. 2011;19(1):73–7.

15. Guibal E, Cambe S, Bayle S, Taulemesse J-M, Vincent T. Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci. 2013 Mar 1;393:411–20. doi: 10.1016/j.jcis.2012.10.057 23245882

16. Curtis GL, Faour M, Jawad M, Klika AK, Barsoum WK, Higuera CA. Reduction of Particles in the Operating Room Using Ultraviolet Air Disinfection and Recirculation Units. The Journal of Arthroplasty [Internet]. 2017 Dec 5 [cited 2018 Apr 5]; Available from: http://www.sciencedirect.com/science/article/pii/S0883540317310574

17. Alsved M, Civilis A, Ekolind P, Tammelin A, Andersson AE, Jakobsson J, et al. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow. Journal of Hospital Infection. 2018 Feb 1;98(2):181–90. doi: 10.1016/j.jhin.2017.10.013 29074054

18. Alarifi S, Ali D, Alkahtani S. Oxidative Stress-Induced DNA Damage by Manganese Dioxide Nanoparticles in Human Neuronal Cells. Biomed Res Int. 2017;2017:5478790. doi: 10.1155/2017/5478790 28596964

19. Mishra YK, Adelung R. ZnO tetrapod materials for functional applications. Materials Today. 2018 Jul 1;21(6):631–51.

20. Wang ZL. Nanostructures of zinc oxide. Materials Today. 2004 Jun 1;7(6):26–33.

21. Vayssieres L, Keis K, Lindquist S-E, Hagfeldt A. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. J Phys Chem B. 2001 May 1;105(17):3350–2.

22. Quartararo J, Guelton M, Rigole M, Amoureux J-P, Fernandez C, Grimblot J. Sol–gel synthesis of alumina modified by phosphorus: a solid state NMR characterization study. Journal of Materials Chemistry. 1999;9(10):2637–46.

23. TSI Incorporated. TSI BioTrak® Real-Time Viable Particle Counter Sample and Collection Efficiency; Application Note CC-104. MN, USA; 2014 p. 7.

24. Riley F. The Electronics Assembly Handbook. Springer Science & Business Media; 2013. 576 p.

25. Farid Ul Islam AKM, Islam R, Khan KA. Effects of deposition variables on spray-deposited MnO2 thin films prepared from Mn(C2H3O2)2·4H2O. Renewable Energy. 2005 Dec 1;30(15):2289–302.

26. Yamada N, Ohmasa M, Horiuchi S. Textures in natural pyrolusite, β-MnO2, examined by 1 MV HRTEM. Acta Cryst B. 1986 Feb 1;42(1):58–61.

27. Qiao R, Chin T, Harris SJ, Yan S, Yang W. Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides. Current Applied Physics. 2013 May 1;13(3):544–8.

28. Liu MF, Du ZZ, Xie YL, Li X, Yan ZB, Liu J-M. Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7-yCa0.3+yMn1-yRuyO3 (0≤y<0.3): the role of Mn-Ru t2g super-exchange. Sci Rep. 2015 Apr 24;5:9922. doi: 10.1038/srep09922 25909460

29. Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist. 2000 Mar 1;85(3–4):543–56.

30. Sherman DM. The electronic structures of manganese oxide minerals. American Mineralogist. 1984 Aug 1;69(7–8):788–99.

31. Sherman DM. Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochimica et Cosmochimica Acta. 2005 Jul 1;69(13):3249–55.

32. Sidheswaran MA, Destaillats H, Sullivan DP, Larsen J, Fisk WJ. Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts. Applied Catalysis B: Environmental. 2011 Aug 31;107(1):34–41.

33. Julien CM, Mauger A. Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials (Basel) [Internet]. 2017 Nov 17 [cited 2019 Jun 20];7(11). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707613/

34. Xia X, Li H, Chen Z-H. The Study of Semiconduction Properties of γ ‐ MnO2 with Different Degrees of Reduction. J Electrochem Soc. 1989 Jan 1;136(1):266–71.

35. Song F, Wu L, Liang S. Giant Seebeck coefficient thermoelectric device of MnO2 powder. Nanotechnology. 2012 Mar 2;23(8):085401. doi: 10.1088/0957-4484/23/8/085401 22293218

36. Ledoux V, Evstratov A, Roux J-C, Lopez-Cuesta J-M. Photocatalysis and oxidative electrocayalysis: different activation modes and similar action mechanisms. In: P-295 [Internet]. Strabsourg, France; 2016. p. 198. Available from: http://spea9.unistra.fr/index.php/program

37. Lucht KP, Mendoza-Cortes JL. Birnessite: A Layered Manganese Oxide To Capture Sunlight for Water-Splitting Catalysis. J Phys Chem C. 2015 Oct 8;119(40):22838–46.

38. Bunker BC, Casey WH. The aqueous chemistry of oxides. New York (N.Y.): Oxford University Press; 2016.

39. Peng H, McKendry IG, Ding R, Thenuwara AC, Kang Q, Shumlas SL, et al. Redox properties of birnessite from a defect perspective. PNAS. 2017 Sep 5;114(36):9523–8. doi: 10.1073/pnas.1706836114 28827355

40. Alfaruqi MH, Islam S, Putro DY, Mathew V, Kim S, Jo J, et al. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta. 2018 Jun 20;276:1–11.

41. Matar SF, Campet G, Subramanian MA. Electronic properties of oxides: Chemical and theoretical approaches. Progress in Solid State Chemistry. 2011 Jul 1;39(2):70–95.

42. Seetawan U, Jugsujinda S, Seetawan T, Ratchasin A, Euvananont C, Junin C, et al. Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Materials Sciences and Applications. 2011 Sep 27;2(9):1302–6.

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden