#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Contrast-enhanced spectral mammography with a compact synchrotron source


Autoři: Lisa Heck aff001;  Martin Dierolf aff001;  Christoph Jud aff001;  Elena Eggl aff001;  Thorsten Sellerer aff001;  Korbinian Mechlem aff001;  Benedikt Günther aff001;  Klaus Achterhold aff001;  Bernhard Gleich aff001;  Stephan Metz aff003;  Daniela Pfeiffer aff003;  Kevin Kröninger aff002;  Julia Herzen aff001
Působiště autorů: Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany aff001;  Chair for Experimental Physics IV, TU Dortmund University, 44221 Dortmund, Germany aff002;  Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany aff003
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222816

Souhrn

For early breast cancer detection, mammography is nowadays the commonly used standard imaging approach, offering a valuable clinical tool for visualization of suspicious findings like microcalcifications and tumors within the breast. However, due to the superposition of anatomical structures, the sensitivity of mammography screening is limited. Within the last couple of years, the implementation of contrast-enhanced spectral mammography (CESM) based on K-edge subtraction (KES) imaging helped to improve the identification and classification of uncertain findings. In this study, we introduce another approach for CESM based on a two-material decomposition, with which we expect fundamental improvements compared to the clinical procedure. We demonstrate the potential of our proposed method using the quasi-monochromatic radiation of a compact synchrotron source—the Munich Compact Light Source (MuCLS)—and a modified mammographic accreditation phantom. For direct comparison with the clinical CESM approach, we also performed a standard dual-energy KES at the MuCLS, which outperformed the clinical CESM images in terms of contrast-to-noise ratio (CNR) and spatial resolution. However, the dual-energy-based two-material decomposition approach achieved even higher CNR values. Our experimental results with quasi-monochromatic radiation show a significant improvement of the image quality at lower mean glandular dose (MGD) than the clinical CESM. At the same time, our study indicates the great potential for the material-decomposition instead of clinically used KES to improve the quantitative outcome of CESM.

Klíčová slova:

Clinical laboratories – Imaging techniques – Iodine – Photons – X-ray radiography – Mammography – Synchrotrons – Calcium imaging


Zdroje

1. Kreienberg R, Moebus V, Jonat V, Kühn T. Mammakarzinom Interdisziplinär. 4th ed.; 2010.

2. Taylor R, Morrell S, Estoesta J, Brassil A. Mammography Screening and Breast Cancer Mortality in New South Wales, Australia. Cancer Causes & Control. 2004;15(6):543–550. doi: 10.1023/B:CACO.0000036153.95908.f2

3. Stout NK, Lee SJ, Schechter CB, Kerlikowske K, Alagoz O, Berry D, et al. Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography. J Natl Cancer Inst. 2014;106(6):dju092. doi: 10.1093/jnci/dju092 24872543

4. Venkatesan A, Chu P, Kerlikowske K, Sickles EA, Smith-Bindman R. Positive predictive value of specific mammographic findings according to reader and patient variables. Radiology. 2009;250(3):648–657. doi: 10.1148/radiol.2503080541 19164116

5. Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Ann Oncol. 2008;19(4):614–622. doi: 10.1093/annonc/mdm481 18024988

6. Mandelson MT, Oestreicher N, Porter PL, Finder DWCA, Taplin SH, White E. Breast Density as a Predictor of Mammographic Detection: Comparison of Interval- and Screen-Detected Cancers. JNCI: Journal of the National Cancer Institute. 2000;92(13):1081–1087. doi: 10.1093/jnci/92.13.1081 10880551

7. ElSaid NAE, Farouk S, Shetat OMM, Khalifa NM, Nada OM. Contrast enhanced digital mammography: Is it useful in detecting lesions in edematous breast? Egyptian Society of Radiology and Nuclear Medicine. 2014;146(3):371–381.

8. Lobbes MBI, Lalji U, Houwers J, Nijssen EC, Nelemans PJ, van Roozendaal L, et al. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme. European Radiology. 2014;24(7):1668–1676. doi: 10.1007/s00330-014-3154-5 24696228

9. Cheung YC, Lin YC, Wan YL, Yeow KM, Huang PC, Lo YF, et al. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis. Eur Radiol. 2014;24:2394–2403. doi: 10.1007/s00330-014-3271-1 24928280

10. Carton AK, Saab-Puong S, Suminski M. SenoBright Contrast Enhanced Spectral Mammography Technology. White Paper. 2012;.

11. Alvarez R, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Physics in Medicine and Biology. 1976;21(5):733–744. doi: 10.1088/0031-9155/21/5/002 967922

12. Estève F, Elleaume H, Bertrand B, Marie Charvet A, Fiedler S, Le Duc G, et al. Coronary Angiography with Synchrotron X-Ray Source on Pigs after Iodine or Gadolinium Intravenous Injection. Academic Radiology. 2002;9 Suppl 1:S92–7.

13. Matsushita S, Hyodo K, Akishima S, Sato F, Imazuru T, Noma M, et al. Coronary angiography in rats using synchrotron radiation. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment. 2005;548:94–98. doi: 10.1016/j.nima.2005.03.073

14. Cooper DML, Chapman D, Carter Y, Wu Y, Panahifar A, Britz H, et al. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging. Physics in Medicine and Biology. 2012;57:5777–86. doi: 10.1088/0031-9155/57/18/5777

15. Bassey B, Martinson M, Samadi N, Belev G, Karanfil C, Qi P, et al. Multiple energy synchrotron biomedical imaging system. Physics in Medicine and Biology. 2016;61:8180. doi: 10.1088/0031-9155/61/23/8180 27804925

16. Mechlem K, Sellerer T, Ehn S, Münzel D, Braig E, Herzen J, et al. Spectral Angiography Material Decomposition Using an Empirical Forward Model and a Dictionary-Based Regularization. IEEE Transactions on Medical Imaging. 2018;37(10):2298–2309. doi: 10.1109/TMI.2018.2840841 29993572

17. Oliva P, Golosio B, Stumbo S, Bravin A, Tomassini P. Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality. Medical Physics. 2009;36(11):5149–5161. doi: 10.1118/1.3245876 19994525

18. Eggl E, Mechlem K, Braig E, Kulpe S, Dierolf M, Günther B, et al. Mono-energy coronary angiography with a compact synchrotron source. Scientific Reports. 2017;7:42211. doi: 10.1038/srep42211 28181544

19. Eggl E, Grandl S, Sztrókay-Gaul A, Dierolf M, Jud C, Heck L, et al. Dose-compatible grating-based phase-contrast mammography on mastectomy specimens using a compact synchrotron source. Scientific Reports. 2018;8(1):15700. doi: 10.1038/s41598-018-33628-z 30356116

20. Gammex—Sun Nuclear Company. Mammographic Accreditation Phantom Gammex 156. Datasheet. 2017; p. 1–2.

21. Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2015;26:v8–v30. doi: 10.1093/annonc/mdv298 26314782

22. Giuliano AE, Jones RC, Brennan M, Statman R. Sentinel lymphadenectomy in breast cancer. Journal of Clinical Oncology. 1997;15(6):2345–2350. doi: 10.1200/JCO.1997.15.6.2345 9196149

23. Haigh FPI, Hansen NM, KarenQi M, Giuliano AE. Biopsy Method and Excision Volume Do Not Affect Success Rate of Subsequent Sentinel Lymph Node Dissection in Breast Cancer. Annals of Surgical Oncology. 2000;7:21–27. doi: 10.1007/s10434-000-0021-1 10674444

24. Eggl E, Dierolf M, Achterhold K, Jud C, Günther B, Braig E, et al. The Munich Compact Light Source: Initial performance measures. J Synchrotron Radiat. 2016;23:1137–1142. doi: 10.1107/S160057751600967X 27577768

25. Huang Z, Ruth RD. Laser-electron storage ring. Phys Rev Lett. 1998;80(5):976–979. doi: 10.1103/PhysRevLett.80.976

26. Loewen R. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-ray Source. SLAC-Report 632, Stanford University, USA. 2003;.

27. Günther B, Dierolf M, Gifford M, Eggl E, Gleich B, Achterhold K, et al. The Munich Compact Light Source: Flux Doubling and Source Position Stabilization At a Compact Inverse-Compton Synchrotron X-ray Source. Microscopy and Microanalysis. 2018;24:316–317. doi: 10.1017/S1431927618013892

28. Willmott P. An Introduction to Synchrotron Radiation: Techniques and Applications. John Wiley and Sons, Ltd; 2011.

29. Lehmann L, Alvarez R, Macovski A, Brody WR, Pelc NJ, Riederer SJ, et al. Generalized image combinations in dual kVp digital radiography. Medical Physics. 1981;8(5):659–667. doi: 10.1118/1.595025 7290019

30. Schoonjans T, Brunetti A, Golosio B, Sanchez del Rio M, Solé VA, Ferrero C, et al. The xraylib library for X-ray-matter interactions: new developments and applications. Spectrochimica Acta Part B: Atomic Spectroscopy. 2011;66(11-12):776–784. doi: 10.1016/j.sab.2011.09.011

31. Boone JM. Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: computer-fit values of Monte Carlo derived data. Med Phys. 2002;29(5):869–875. doi: 10.1118/1.1472499 12033583

32. Mayles P, Nahum A, Rosenwald J. Handbook of Radiotherpay Physics: Theory and Practice. 1st ed. CRC Press; 2007.

33. Buhr H, Büermann L, Gerlach M, Krumrey M, Rabus H. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV. Physics in Medicine and Biology. 2012;57(24):8231–8247. doi: 10.1088/0031-9155/57/24/8231 23192280

34. Donath T, Brandstetter S, Cibik L, Commichau S, Hofer P, Krumrey M, et al. Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV. J Phys: Conf Ser. 2013;425(6):62001.

35. Modregger P, Lübbert D, Schäfer P, Köhler R. Spatial resolution in Bragg-magnified X-ray images as determined by Fourier analysis. physica status solidi (a). 2007;204(8):2746–2752. doi: 10.1002/pssa.200675685

36. Huda W, Abrahams RB. X-Ray-Based Medical Imaging and Resolution. American Journal of Roentgenology. 2015;204:393–397. doi: 10.2214/AJR.14.13126

37. Lee SY, Rhee CM, Leung AM, Braverman LE, Brent GA, Pearce EN. A Review: Radiographic Iodinated Contrast Media-Induced Thyroid Dysfunction. The Journal of Clinical Endocrinology & Metabolism. 2015;100(2):376–383. doi: 10.1210/jc.2014-3292

38. Tavakol M, Ashraf S, Brener S. Risks and Complications of Coronary Angiography: A Comprehensive Review. Global journal of health science. 2012;4:65–93. doi: 10.5539/gjhs.v4n1p65 22980117

39. James J, Pavlicek W, Hanson JA, Boltz TF, Patel B. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography. American Journal of Roentgenology. 2017;208:362–372. doi: 10.2214/AJR.16.16743 28112559

40. Kulpe S, Dierolf M, Braig E, Günther B, Achterhold K, Gleich B, et al. K-edge subtraction imaging for coronary angiography with a compact synchrotron X-ray source. PLOS ONE. 2018;13:e0208446. doi: 10.1371/journal.pone.0208446 30532277

41. Dix WR. Intravenous coronary angiography with synchrotron radiation. vol. 2; 1995. p. 159–191.

42. Du Y, Yan L, Hua J, Du Q, Zhang Z, Li R, et al. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source. Review of Scientific Instruments. 2013;84:053301. doi: 10.1063/1.4803671 23742539

43. Akagi T, Kosuge A, Araki S, Hajima R, Honda Y, Miyajima T, et al. Narrow-band photon beam via laser Compton scattering in an energy recovery linac. Phys Rev Accel Beams. 2016;19:114701. doi: 10.1103/PhysRevAccelBeams.19.114701

44. Variola A, Haissinski J, Loulergue A, Zomer F, Design T. ThomX Technical Design Report; 2014.

45. Shcherbakov A, Androsov VP, Ayzatskiy M, Boriskin VN, Bulyak E, Dovbnya A, et al. The Kharkov X-ray generator facility NESTOR. 2013; p. 2253–2255.

46. Panta RK, Bell S, Healy J, Aamir R, Bateman C, Moghiseh M, et al. Element-specific spectral imaging of multiple contrast agents: A phantom study. Journal of Instrumentation. 2018;13:T02001. doi: 10.1088/1748-0221/13/02/T02001


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#