#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dual number-based variational data assimilation: Constructing exact tangent linear and adjoint code from nonlinear model evaluations


Autoři: Jann Paul Mattern aff001;  Christopher A. Edwards aff001;  Christopher N. Hill aff002
Působiště autorů: Ocean Sciences Department, UC Santa Cruz, Santa Cruz, CA, United States of America aff001;  Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223131

Souhrn

Dual numbers allow for automatic, exact evaluation of the numerical derivative of high-dimensional functions at an arbitrary point with minimal coding effort. We use dual numbers to construct tangent linear and adjoint model code for a biogeochemical ocean model and apply it to a variational (4D-Var) data assimilation system when coupled to a realistic physical ocean circulation model with existing data assimilation capabilities. The resulting data assimilation system takes modestly longer to run than its hand-coded equivalent but is considerably easier to implement and updates automatically when modifications are made to the biogeochemical model, thus making its maintenance with code changes trivial.

Klíčová slova:

Chlorophyll – Mathematical functions – Oceans – Programming languages – Tangents – Biogeochemistry – Fortran – Ocean modeling


Zdroje

1. Edwards CA, Moore AM, Hoteit I, Cornuelle BD. Regional Ocean Data Assimilation. Annual Review of Marine Science. 2015;7(1):21–42. doi: 10.1146/annurev-marine-010814-015821 25103331

2. Mattern JP, Song H, Edwards CA, Moore AM, Fiechter J. Data assimilation of physical and chlorophyll a observations in the California Current System using two biogeochemical models. Ocean Modelling. 2017;109 : 55–71. doi: 10.1016/j.ocemod.2016.12.002

3. Martins JRRA, Hwang JT. Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models. AIAA Journal. 2013;51(11):2582–2599. doi: 10.2514/1.J052184

4. Griewank A, Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. Siam, 2008.

5. Giering R, Kaminski T. Recipes for adjoint code construction. ACM Transactions on Mathematical Software. 1998;24(4):437–474. doi: 10.1145/293686.293695

6. Giering R. Tangent linear and adjoint biogeochemical models. Inverse methods in global biogeochemical cycles. Vol. 114; 2000. p. 33–48. doi: 10.1029/GM114p0033

7. Leuck H, Nagel HH. Automatic differentiation facilitates OF-integration into steering-angle-based road vehicle tracking. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149). IEEE Comput. Soc; 1999. p. 360–365.

8. Yu W, Blair M. DNAD, a simple tool for automatic differentiation of Fortran codes using dual numbers. Computer Physics Communications. 2013;184(5):1446–1452. doi: 10.1016/j.cpc.2012.12.025

9. Wang G, Cao X, Cai X, Sun J, Li X, Wang H. A new data assimilation method for high-dimensional models. PLOS ONE. 2018;13(2):1–15. doi: 10.1371/journal.pone.0191714

10. Orr JC, Epitalon JM, Dickson AG, Gattuso JP. Routine uncertainty propagation for the marine carbon dioxide system. Marine Chemistry. 2018;207 : 84–107. doi: 10.1016/j.marchem.2018.10.006

11. Harkin AA, Harkin JB. Geometry of Generalized Complex Numbers. Mathematics Magazine. 2004;77(2):118–129. doi: 10.1080/0025570X.2004.11953236

12. Le Dimet F, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A. 1986;38A(2):97–110. doi: 10.3402/tellusa.v38i2.11706

13. Haidvogel DB, Arango HG, Budgell WP, Cornuelle BD, Curchitser EN, Di Lorenzo E, et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics. 2008;227 : 3595–3624. doi: 10.1016/j.jcp.2007.06.016

14. Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, et al. NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling. 2007;202(1-2):12–25. doi: 10.1016/j.ecolmodel.2006.08.021

15. Thépaut JN, Courtier P. Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Quarterly Journal of the Royal Meteorological Society. 1991;117(502):1225–1254. doi: 10.1002/qj.49711750206

16. Courtier P, Thépaut JN, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society. 1994;120(519):1367–1387. doi: 10.1002/qj.49712051912

17. Mattern JP, Edwards CA. A simple finite difference-based approximation for biogeochemical tangent linear and adjoint models. Journal of Geophysical Research: Oceans. 2019;124(1):4–26.

18. Mattern JP. GitHub repository with dual number example implementation. GitHub:https://github.com/jpmattern/dualnum.

19. Doyle JD, Jiang Q, Chao Y, Farrara J. High-resolution real-time modeling of the marine atmospheric boundary layer in support of the AOSN-II field campaign. Deep-Sea Research Part II: Topical Studies in Oceanography. 2009;56(3-5):87–99. doi: 10.1016/j.dsr2.2008.08.009

20. Moore AM, Arango HG, Broquet G, Powell BS, Weaver AT, Zavala-Garay J. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems. Part I—System overview and formulation. Progress in Oceanography. 2011;91(1):34–49. doi: 10.1016/j.pocean.2011.05.004

21. Mattern JP, Edwards CA, Moore AM. Improving Variational Data Assimilation through Background and Observation Error Adjustments. Monthly Weather Review. 2018;146(2):485–501. doi: 10.1175/MWR-D-17-0263.1

22. Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. 2014;15 : 1593–1623. ArXiv:1111.4246.


Článek vyšel v časopise

PLOS One


2019 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#