Potential role for microRNA-16 (miR-16) and microRNA-93 (miR-93) in diagnosis and prediction of disease progression in mycosis fungoides in Egyptian patients

Autoři: Iman Mamdouh Talaat aff001;  Rania ElSaied Abdelmaksoud aff004;  Maha Guimei aff001;  Naglaa Fathi Agamia aff004;  Ahmed Nugud aff005;  Ahmed Taher El-Serafi aff006
Působiště autorů: Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE aff001;  Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, UAE aff002;  Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt aff003;  Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt aff004;  Pediatric Resident, Aljalila Children Hospital, Dubai, UAE aff005;  Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt aff006
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224305


Mycosis Fungoides (MF) is the most common type of cutaneous T-cell lymphomas. Early stage patients are treated with topical therapies and have normal life expectancy whereas patients with advanced disease encounter frequent relapses and have a five-year survival rate that does not exceed 15%. The aim of the present study was to characterize the expression of microRNA-16 (miR-16) and microRNA-93 (miR-93) in early and advanced cases of MF in relation to the clinicopathological parameters. Ten skin biopsies of early and advanced MF were investigated for the expression of miR-16 and miR-93 using RT-PCR. Immunohistochemical expression of apoptosis markers (BCL-2 and Survivin) were also investigated in the studied cases compared to normal skin and eczema biopsies. In the present study, BCL-2 and Survivin showed strong positive expression on neoplastic lymphocytes in all cases of MF regardless of their stage. We have also shown that miR-16 was significantly upregulated in advanced cases of MF compared to cases with early disease (p-value was less than 0.05). However, expression of miR-16 did not show any statistically significant correlation with age, gender, or expression of apoptotic markers. On the other hand, the expression of miR-93 showed significant downregulation in all lymphoma cases irrespective of their stage, compared to normal and eczema cases. Our results suggest that upregulation of miR-16 could be used to predict an aggressive course of the disease. We also suggest that miR-93 downregulation could serve as possible tool for establishing early diagnosis in early challenging cases. Our findings also provide consistent evidence that the anti-apoptotic molecules may play an important role in the pathogenesis of this type of cutaneous lymphomas and promote the idea that their inhibition could be an interesting novel therapeutic strategy in the treatment of MF.

Klíčová slova:

Apoptosis – Cancer treatment – Carcinogenesis – Fungal diseases – Lymphocytes – MicroRNAs – T cells – Eczema


1. Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA dermatology. 2013;149(11):1295–9. doi: 10.1001/jamadermatol.2013.5526 24005876

2. Rosen ST, Querfeld C. Primary cutaneous T-cell lymphomas. ASH Education Program Book. 2006;2006(1):323–30.

3. Wilcox RA. Cutaneous T‐cell lymphoma: 2016 update on diagnosis, risk‐stratification, and management. American journal of hematology. 2016;91(1):151–65. doi: 10.1002/ajh.24233 26607183

4. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85. doi: 10.1182/blood-2004-09-3502 15692063

5. Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22. doi: 10.1182/blood-2007-03-055749 17540844

6. Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. Journal of clinical oncology. 2010;28(31):4730–9. doi: 10.1200/JCO.2009.27.7665 20855822

7. Cyrenne BM, Lewis JM, Weed JG, Carlson KR, Mirza FN, Foss FM, et al. Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients. Blood. 2017;130(19):2073–83. doi: 10.1182/blood-2017-06-792150 28972015

8. Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nature genetics. 2015;47(9):1011. doi: 10.1038/ng.3356 26192916

9. Girardi M, Heald PW, Wilson LD. The pathogenesis of mycosis fungoides. New England Journal of Medicine. 2004;350(19):1978–88. doi: 10.1056/NEJMra032810 15128898

10. Kadin ME, Vonderheid EC. Targeted therapies: Denileukin diftitox—a step towards a'magic bullet'for CTCL. Nature Reviews Clinical Oncology. 2010;7(8):430. doi: 10.1038/nrclinonc.2010.105 20668480

11. Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood. 2006;108(3):1058–64. doi: 10.1182/blood-2005-08-007377 16861352

12. Jung JT, Kim DH, Kwak EK, Kim JG, Park TI, Sohn SK, et al. Clinical role of Bcl-2, Bax, or p53 overexpression in peripheral T-cell lymphomas. Annals of hematology. 2006;85(9):575–81. doi: 10.1007/s00277-006-0127-z 16673127

13. Dewson G, Kluck R. Bcl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton. 2010;2(9):22.

14. Dogra S, Mahajan R. Phototherapy for mycosis fungoides. Indian Journal of Dermatology, Venereology, and Leprology. 2015;81(2):124.

15. Zic JA. The treatment of cutaneous T‐cell lymphoma with photopheresis. Dermatologic therapy. 2003;16(4):337–46. 14686977

16. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature medicine. 1997;3(8):917. doi: 10.1038/nm0897-917 9256286

17. Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K, et al. An IAP-IAP complex inhibits apoptosis. Journal of Biological Chemistry. 2004;279(33):34087–90. doi: 10.1074/jbc.C400236200 15218035

18. Monzó M, Rosell R, Felip E, Astudillo J, Sánchez JJ, Maestre J, et al. A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non–small-cell lung cancers. Journal of Clinical Oncology. 1999;17(7):2100–. doi: 10.1200/JCO.1999.17.7.2100 10561264

19. Nada H RL, Amin S. Expression of Survivin Gene and Protein in Mycosis Fungoides. J Nurs Care 2016;5(2):1–6. doi: 10.4172/2167-1168.1000339

20. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nature reviews genetics. 2009;10(10):704. doi: 10.1038/nrg2634 19763153

21. Sandoval J, Díaz-Lagares A, Salgado R, Servitje O, Climent F, Ortiz-Romero PL, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. Journal of Investigative Dermatology. 2015;135(4):1128–37. doi: 10.1038/jid.2014.487 25405321

22. Lawrie CH. MicroRNA expression in lymphoid malignancies: new hope for diagnosis and therapy? Journal of cellular and molecular medicine. 2008;12(5a):1432–44. doi: 10.1111/j.1582-4934.2008.00399.x 18624758

23. Ralfkiaer U, Lindal L, Litman T, Gjerdrum L-M, Ahler CB, Gniadecki R, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer research. 2014;34(12):7207–17. 25503151

24. Merkel O, Hamacher F, Laimer D, Sifft E, Trajanoski Z, Scheideler M, et al. Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK− anaplastic large-cell lymphoma. Proceedings of the National Academy of Sciences. 2010;107(37):16228–33.

25. Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR‐106b‐25 microRNA cluster in hepatocellular carcinoma. Cancer science. 2009;100(7):1234–42. doi: 10.1111/j.1349-7006.2009.01164.x 19486339

26. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences. 2002;99(24):15524–9.

27. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine. 2005;353(17):1793–801. doi: 10.1056/NEJMoa050995 16251535

28. Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer research. 2009;69(13):5553–9. doi: 10.1158/0008-5472.CAN-08-4277 19549910

29. Aqeilan R, Calin G, Croce C. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell death and differentiation. 2010;17(2):215. doi: 10.1038/cdd.2009.69 19498445

30. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences. 2005;102(39):13944–9.

31. Rozati S, Cheng PF, Widmer DS, Fujii K, Levesque MP, Dummer R. Romidepsin and azacitidine synergize in their epigenetic modulatory effects to induce apoptosis in CTCL. Clinical Cancer Research. 2016;22(8):2020–31. doi: 10.1158/1078-0432.CCR-15-1435 26660520

32. Cang S, Iragavarapu C, Savooji J, Song Y, Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. Journal of hematology & oncology. 2015;8(1):129.

33. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, Degli Uberti EC. miR‐15a and miR‐16‐1 down‐regulation in pituitary adenomas. Journal of cellular physiology. 2005;204(1):280–5. doi: 10.1002/jcp.20282 15648093

34. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, et al. miR‐15b and miR‐16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. International journal of cancer. 2008;123(2):372–9. doi: 10.1002/ijc.23501 18449891

35. van Kester MS, Ballabio E, Benner MF, Chen XH, Saunders NJ, van der Fits L, et al. miRNA expression profiling of mycosis fungoides. Molecular oncology. 2011;5(3):273–80. doi: 10.1016/j.molonc.2011.02.003 21406335

36. Tian T, Zhou Y, Feng X, Ye S, Wang H, Wu W, et al. MicroRNA-16 is putatively involved in the NF-κB pathway regulation in ulcerative colitis through adenosine A2a receptor (A2aAR) mRNA targeting. Scientific reports. 2016;6:30824. doi: 10.1038/srep30824 27476546

37. Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du W, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene. 2011;30(7):806. doi: 10.1038/onc.2010.465 20956944

38. Zhu W, He J, Chen D, Zhang B, Xu L, Ma H, et al. Expression of miR-29c, miR-93, and miR-429 as potential biomarkers for detection of early stage non-small lung cancer. PloS one. 2014;9(2):e87780. doi: 10.1371/journal.pone.0087780 24523873

39. Du L, Zhao Z, Ma X, Hsiao T-H, Chen Y, Young E, et al. miR-93-directed downregulation of DAB2 defines a novel oncogenic pathway in lung cancer. Oncogene. 2014;33(34):4307. doi: 10.1038/onc.2013.381 24037530

40. Chen L, Jiang M, Yuan W, Tang H. Prognostic value of miR-93 overexpression in resectable gastric adenocarcinomas. Acta gastro-enterologica Belgica. 2012;75(1):22–7. 22567743

41. Yu X-F, Zou J, Bao Z-J, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World journal of gastroenterology: WJG. 2011;17(42):4711. doi: 10.3748/wjg.v17.i42.4711 22180714

42. Moskowitz AJ, Horwitz SM. Targeting histone deacetylases in T-cell lymphoma. Leukemia & lymphoma. 2017;58(6):1306–19.

Článek vyšel v časopise


2019 Číslo 10