Obesity-associated insulin resistance adversely affects skin function

Autoři: Masafumi Aoki aff001;  Takatoshi Murase aff001
Působiště autorů: Biological Science Laboratories, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi, Japan aff001
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223528


The aim of this study was to identify changes in skin function associated with obesity and the mechanisms underlying these changes. Functional changes and gene expression in skin were investigated in C57BL/6J mice fed either a control or high-fat diet (HFD). The insulin responsiveness of the skin and skeletal muscle was also evaluated. The effects of inhibiting insulin signaling and altered glucose concentration on skin function-associated molecules and barrier function were analyzed in keratinocytes. HFD-fed mice were not only severely obese, but also exhibited impaired skin barrier function and diminished levels of glycerol transporter aquaporin-3, keratins, and desmosomal proteins involved in maintaining skin structure. Moreover, the expression of cell cycle regulatory molecules was altered. Insulin signaling was attenuated in the skin and skeletal muscle of HFD-fed mice. In keratinocytes, inhibition of insulin signaling leads to decreased keratin expression and diminished barrier function, and higher glucose concentrations increased the expression of CDK inhibitor 1A and 1C, which are associated with cell-cycle arrest. Obesity-associated impairment of skin function can be attributed to structural fragility, abnormal glycerol transport, and dysregulated proliferation of epidermal cells. These alterations are at least partly due to cutaneous insulin resistance and hyperglycemia.

Klíčová slova:

Adipose tissue – Cell cycle and cell division – Gene expression – Insulin – Keratins – Obesity – Insulin signaling


1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6. doi: 10.1038/nature05482 17167471

2. Re RN. Obesity-related hypertension. Ochsner J. 2009;9:133–6. 21603428

3. Boden G, Salehi S. Why does obesity increase the risk for cardiovascular disease? Curr Pharm Des. 2013;19:5678–83. doi: 10.2174/1381612811319320003 23448485

4. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21:1443–55. doi: 10.1101/gad.1550907 17575046

5. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105. doi: 10.1016/j.febslet.2007.11.057 18053812

6. Swann G. The skin is the body's largest organ. J Vis Commun Med. 2010;33:148–9. doi: 10.3109/17453054.2010.525439 21087182

7. Calleja-Agius J, Muscat-Baron Y, Brincat MP. Skin ageing. Menopause Int. 2007;13:60–4. doi: 10.1258/175404507780796325 17540135

8. Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol. 2016;33:1–5. doi: 10.5114/pdia.2015.48037 26985171

9. Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006;47:293–306. doi: 10.3349/ymj.2006.47.3.293 16807977

10. Menon GK, Cleary GW, Lane ME. The structure and function of the stratum corneum. Int J Pharm. 2012;435:3–9. doi: 10.1016/j.ijpharm.2012.06.005 22705878

11. Wikramanayake TC, Stojadinovic O, Tomic-Canic M. Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care (New Rochelle) 2014;3:272–80.

12. Ling-juan Z. Keratins in Skin Epidermal Development and Diseases 2018 http://dx.doi.org/10.5772/intechopen.79050.

13. McLean WH, Irvine AD. Disorders of keratinisation: from rare to common genetic diseases of skin and other epithelial tissues. Ulster Med J. 2007;76:72–82. 17476820

14. Vijayaraj P, Söhl G, Magin TM. Keratin transgenic and knockout mice: functional analysis and validation of disease-causing mutations. Methods Mol Biol. 2007;360:203–51. doi: 10.1385/1-59745-165-7:203 17172732

15. Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta. 2008;1778:572–87. doi: 10.1016/j.bbamem.2007.07.014 17854763

16. Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med. 2014;4:a015297. doi: 10.1101/cshperspect.a015297 25368015

17. Mutanu Jungersted J, Hellgren LI, Høgh JK, Drachmann T, Jemec GB, Agner T. Ceramides and barrier function in healthy skin. Acta Derm Venereol. 2010;90:350–3. doi: 10.2340/00015555-0894 20574598

18. Fluhr JW, Darlenski R, Surber C. Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol. 2008;159:23–34. doi: 10.1111/j.1365-2133.2008.08643.x 18510666

19. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3:1–58. doi: 10.1002/cphy.c110062 23720280

20. Matsumoto M, Ibuki A, Minematsu T, Sugama J, Horii M, Ogai K, et al. Structural changes in dermal collagen and oxidative stress levels in the skin of Japanese overweight males. Int J Cosmet Sci. 2014;36:477–84. doi: 10.1111/ics.12145 24893563

21. Ibuki A, Akase T, Nagase T, Minematsu T, Nakagami G, Horii M, et al. Skin fragility in obese diabetic mice: possible involvement of elevated oxidative stress and upregulation of matrix metalloproteinases. Exp Dermatol. 2012;21:178–83. doi: 10.1111/j.1600-0625.2011.01409.x 22171591

22. Chiricozzi A, Raimondo A, Lembo S, Fausti F, Dini V, Costanzo A, et al. Crosstalk between skin inflammation and adipose tissue-derived products: pathogenic evidence linking psoriasis to increased adiposity. Expert Rev Clin Immunol. 2016;12:1299–308. doi: 10.1080/1744666X.2016.1201423 27322922

23. Brown J, Wimpenny P, Maughan H. Skin problems in people with obesity. Nurs Stand. 2004;18:38–42.

24. Löffler H, Aramaki JU, Effendy I. The influence of body mass index on skin susceptibility to sodium lauryl sulphate. Skin Res Technol. 2002;8:19–22. 12005116

25. Nino M, Franzese A, Ruggiero Perrino N, Balato N. The effect of obesity on skin disease and epidermal permeability barrier status in children. Pediatr Dermatol. 2012;29:567–70. doi: 10.1111/j.1525-1470.2012.01738.x 22471938

26. Mori S, Shiraishi A, Epplen K, Butcher D, Murase D, Yasuda Y, et al. Correction to: Characterization of skin function associated with obesity and specific correlation to local/systemic parameters in American women. Lipids Health Dis. 2017;16:231. doi: 10.1186/s12944-017-0632-1 29212514

27. Quondamatteo F. Skin and diabetes mellitus: what do we know? Cell Tissue Res. 2014;355: 1–21. doi: 10.1007/s00441-013-1751-2 24318789

28. Tellechea A, Kafanas A, Leal EC, Tecilazich F, Kuchibhotla S, Auster ME, et al. Increased skin inflammation and blood vessel density in human and experimental diabetes. Int J Low Extrem Wounds. 2013;12:4–11. doi: 10.1177/1534734612474303 23446362

29. Boric M, Skopljanac I, Ferhatovic L, Jelicic Kadic A, Banozic A, Puljak L. Reduced epidermal thickness, nerve degeneration and increased pain-related behavior in rats with diabetes type 1 and 2. J Chem Neuroanat. 2013;53:33–40. doi: 10.1016/j.jchemneu.2013.10.001 24126225

30. Sakai S, Endo Y, Ozawa N, Sugawara T, Kusaka A, Sayo T, et al. Characteristics of the epidermis and stratum corneum of hairless mice with experimentally induced diabetes mellitus. J Invest Dermatol. 2003;120:79–85. doi: 10.1046/j.1523-1747.2003.12006.x 12535201

31. Taylor KR, Costanzo AE, Jameson JM. Dysfunctional γδ T cells contribute to impaired keratinocyte homeostasis in mouse models of obesity. J Invest Dermatol. 2011;131: 2409–18. doi: 10.1038/jid.2011.241 21833015

32. Okano J, Kojima H, Katagi M, Nakagawa T, Nakae Y, Terashima T, et al. Hyperglycemia Induces Skin Barrier Dysfunctions with Impairment of Epidermal Integrity in Non-Wounded Skin of Type 1 Diabetic Mice. PLoS One. 2016;11:e0166215. doi: 10.1371/journal.pone.0166215 27846299

33. Jiang N, Zhang S, Zhu J, Shang J, Gao X. Hypoglycemic, hypolipidemic and antioxidant effects of peptides from red deer antlers in streptozotocin-induced diabetic mice. Tohoku J Exp Med. 2015;236:71–9. doi: 10.1620/tjem.236.71 25985857

34. Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IJ, et al. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem. 2009;284: 4679–88. doi: 10.1074/jbc.M807408200 19064993

35. Pendaries V, Le Lamer M, Cau L, Hansmann B, Malaisse J, Kezic S, et al. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Dis. 2015;6:e1656. doi: 10.1038/cddis.2015.29 25695608

36. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122:1285–94. doi: 10.1242/jcs.033969 19386895

37. Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB. Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys. 2011 508:138–43. doi: 10.1016/j.abb.2011.01.014 21276418

38. Donjerkovic D, Scott DW. Regulation of the G1 phase of the mammalian cell cycle. Cell Res. 2000;10:1–16. doi: 10.1038/sj.cr.7290031 10765979

39. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214:516–59. doi: 10.1111/j.1469-7580.2009.01066.x 19422428

40. Kouklis PD, Hutton E, Fuchs E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J Cell Biol. 1994;127:1049–60. doi: 10.1083/jcb.127.4.1049 7525601

41. Kim MY, Lee SE, Chang JY, Kim SC. Retinoid induces the degradation of corneodesmosomes and downregulation of corneodesmosomal cadherins: implications on the mechanism of retinoid-induced desquamation. Ann Dermatol. 2011;23:439–47. doi: 10.5021/ad.2011.23.4.439 22148010

42. Jensen JM, Schütze S, Neumann C, Proksch E. Impaired cutaneous permeability barrier function, skin hydration, and sphingomyelinase activity in keratin 10 deficient mice. J Invest Dermatol. 2000;115:708–13. doi: 10.1046/j.1523-1747.2000.00103.x 10998148

43. Chidgey M, Brakebusch C, Gustafsson E, Cruchley A, Hail C, Kirk S, et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J Cell Biol. 2001;155:821–32. doi: 10.1083/jcb.200105009 11714727

44. He J, Usui I, Ishizuka K, Kanatani Y, Hiratani K, Iwata M, et al. Interleukin-1alpha inhibits insulin signaling with phosphorylating insulin receptor substrate-1 on serine residues in 3T3-L1 adipocytes. Mol Endocrinol. 2006;20:114–24. doi: 10.1210/me.2005-0107 16150868

45. Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 2007;148:241–51. doi: 10.1210/en.2006-0692 17038556

46. Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005;7:1040–052. doi: 10.1089/ars.2005.7.1040 15998259

47. Wertheimer E, Trebicz M, Eldar T, Gartsbein M, Nofeh-Moses S, Tennenbaum T. Differential roles of insulin receptor and insulin-like growth factor-1 receptor in differentiation of murine skin keratinocytes. J Invest Dermatol. 2000;115:24–9. doi: 10.1046/j.1523-1747.2000.00008.x 10886503

48. Wertheimer E, Spravchikov N, Trebicz M, Gartsbein M, Accili D, Avinoah I, et al. The regulation of skin proliferation and differentiation in the IR null mouse: implications for skin complications of diabetes. Endocrinology. 2001;142:1234–41. doi: 10.1210/endo.142.3.7988 11181540

49. Hänel KH, Cornelissen C, Lüscher B, Baron JM. Cytokines and the skin barrier. Int J Mol Sci. 2013;14:6720–45. doi: 10.3390/ijms14046720 23531535

50. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–75. doi: 10.1038/sj.jid.5700340 17108903

51. Jin T, Park KY, Seo SJ. Adiponectin Upregulates Filaggrin Expression via SIRT1-Mediated Signaling in Human Normal Keratinocytes. Ann Dermatol. 2017;29:407–13. doi: 10.5021/ad.2017.29.4.407 28761287

52. Terashi H, Izumi K, Deveci M, Rhodes LM, Marcelo CL. High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus. Int Wound J. 2005;2:298–304. doi: 10.1111/j.1742-4801.2005.00148.x 16618316

53. Spravchikov N, Sizyakov G, Gartsbein M, Accili D, Tennenbaum T, Wertheimer E. Glucose effects on skin keratinocytes: implications for diabetes skin complications. Diabetes. 2001;50:1627–35. doi: 10.2337/diabetes.50.7.1627 11423485

54. Li C, Wang W. Molecular Biology of Aquaporins. Adv Exp Med Biol. 2017;969:1–34. doi: 10.1007/978-94-024-1057-0_1 28258563

55. Hara M, Verkman AS. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci USA. 2003;100: 7360–65. doi: 10.1073/pnas.1230416100 12771381

56. Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB. Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys. 2011;508: 138–43. doi: 10.1016/j.abb.2011.01.014 21276418

Článek vyšel v časopise


2019 Číslo 10