Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis

Autoři: Lilian Otalora aff001;  Efren Chavez aff001;  Daniel Watford aff003;  Lissett Tueros aff004;  Mayrin Correa aff006;  Viji Nair aff007;  Philip Ruiz aff004;  Patricia Wahl aff001;  Sean Eddy aff007;  Sebastian Martini aff007;  Matthias Kretzler aff007;  George W. Burke, III aff002;  Alessia Fornoni aff001;  Sandra Merscher aff001
Působiště autorů: Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff001;  Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff002;  Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, Florida, United States of America aff003;  Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff004;  Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff005;  Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff006;  Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America aff007;  Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America aff008
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article


Focal segmental glomerulosclerosis (FSGS) accounts for about 40% of all nephrotic syndrome cases in adults. The presence of several potential circulating factors has been suggested in patients with primary FSGS and particularly in patients with recurrent disease after transplant. Irrespectively of the nature of the circulating factors, this study was aimed at identifying early glomerular/podocyte-specific pathways that are activated by the sera of patients affected by FSGS. Kidney biopsies were obtained from patients undergoing kidney transplantation due to primary FSGS. Donor kidneys were biopsied pre-reperfusion (PreR) and a subset 1–2 hours after reperfusion of the kidney (PostR). Thirty-one post reperfusion (PostR) and 36 PreR biopsy samples were analyzed by microarray and gene enrichment KEGG pathway analysis. Data were compared to those obtained from patients with incident primary FSGS enrolled in other cohorts as well as with another cohort to correct for pathways activated by ischemia reperfusion. Using an ex-vivo cell-based assay in which human podocytes were cultured in the presence of sera from patients with recurrent and non recurrent FSGS, the molecular signature of podocytes exposed to sera from patients with REC was compared to the one established from patients with NON REC. We demonstrate that inflammatory pathways, including the TNF pathway, are primarily activated immediately after exposure to the sera of patients with primary FSGS, while phagocytotic pathways are activated when proteinuria becomes clinically evident. The TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS supports prior experimental findings from our group demonstrating a causative role of local TNF in podocyte injury in FSGS. Correlation analysis with clinical and histological parameters of disease was performed and further supported a possible role for TNF pathway activation in FSGS. Additionally, we identified a unique set of genes that is specifically activated in podocytes when cultured in the presence of serum of patients with REC FSGS. This clinical translational study supports our prior experimental findings describing a potential role of the TNF pathway in the pathogenesis of FSGS. Validation of these findings in larger cohorts may lay the ground for the implementation of integrated system biology approaches to risk stratify patients affected by FSGS and to identify novel pathways relevant to podocyte injury.

Klíčová slova:

Biopsy – Gene expression – Gene regulation – Chemokines – Kidneys – Microarrays – Pathogenesis – Renal transplantation


1. Braden GL, Mulhern JG, O’Shea MH, Nash SV, Ucci AA Jr., Germain MJ. Changing incidence of glomerular diseases in adults. Am J Kidney Dis. 2000;35(5):878–83. doi: 10.1016/s0272-6386(00)70258-7 10793022

2. Haas M, Spargo BH, Coventry S. Increasing incidence of focal-segmental glomerulosclerosis among adult nephropathies: a 20-year renal biopsy study. Am J Kidney Dis. 1995;26(5):740–50. doi: 10.1016/0272-6386(95)90437-9 7485126

3. Wen Y, Shah S, Campbell KN. Molecular Mechanisms of Proteinuria in Focal Segmental Glomerulosclerosis. Front Med (Lausanne). 2018;5:98. Epub 2018/05/02. doi: 10.3389/fmed.2018.00098 29713631

4. Rosenberg AZ, Kopp JB. Focal Segmental Glomerulosclerosis. Clin J Am Soc Nephrol. 2017;12(3):502–17. Epub 2017/03/01. doi: 10.2215/CJN.05960616 28242845

5. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Science translational medicine. 2011;3(85):85ra46. Epub 2011/06/03. doi: 10.1126/scitranslmed.3002231 21632984

6. Hickson LJ, Gera M, Amer H, Iqbal CW, Moore TB, Milliner DS, et al. Kidney transplantation for primary focal segmental glomerulosclerosis: outcomes and response to therapy for recurrence. Transplantation. 2009;87(8):1232–9. doi: 10.1097/TP.0b013e31819f12be 19384172

7. Huang K, Ferris ME, Andreoni KA, Gipson DS. The differential effect of race among pediatric kidney transplant recipients with focal segmental glomerulosclerosis. Am J Kidney Dis. 2004;43(6):1082–90. doi: 10.1053/j.ajkd.2004.03.017 15168389

8. Maas RJ, Deegens JK, van den Brand JA, Cornelissen EA, Wetzels JF. A retrospective study of focal segmental glomerulosclerosis: clinical criteria can identify patients at high risk for recurrent disease after first renal transplantation. BMC Nephrol. 2013;14:47. doi: 10.1186/1471-2369-14-47 23433074

9. Nehus EJ, Goebel JW, Succop PS, Abraham EC. Focal segmental glomerulosclerosis in children: multivariate analysis indicates that donor type does not alter recurrence risk. Transplantation. 2013;96(6):550–4. doi: 10.1097/TP.0b013e31829c2431 23912170

10. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11(2):76–87. doi: 10.1038/nrneph.2014.216 25447132

11. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334(14):878–83. doi: 10.1056/NEJM199604043341402 8596570

12. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5(11):2115–21. Epub 2010/10/23. doi: 10.2215/CJN.03800609 20966123

13. Beaudreuil S, Zhang X, Herr F, Harper F, Candelier JJ, Fan Y, et al. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One. 2019;14(7):e0219353. Epub 2019/07/30. doi: 10.1371/journal.pone.0219353 31356645

14. Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1041–66. Epub 2019/04/07. doi: 10.1016/j.bbadis.2019.04.001 30953689

15. Kim EY, Anderson M, Dryer SE. Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am J Physiol Renal Physiol. 2012;302(3):F298–307. Epub 2011/10/28. doi: 10.1152/ajprenal.00423.2011 22031853

16. Suranyi MG, Guasch A, Hall BM, Myers BD. Elevated levels of tumor necrosis factor-alpha in the nephrotic syndrome in humans. Am J Kidney Dis. 1993;21(3):251–9. Epub 1993/03/01. doi: 10.1016/s0272-6386(12)80742-6 8447300

17. Joy MS, Gipson DS, Powell L, MacHardy J, Jennette JC, Vento S, et al. Phase 1 trial of adalimumab in Focal Segmental Glomerulosclerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. American Journal of Kidney Diseases. 2010;55(1):50–60. doi: 10.1053/j.ajkd.2009.08.019 19932542

18. Peyser A, Machardy N, Tarapore F, Machardy J, Powell L, Gipson DS, et al. Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study group. BMC Nephrol. 2010;11:2. Epub 2010/02/02. doi: 10.1186/1471-2369-11-2 20113498

19. Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016;126(9):3336–50. doi: 10.1172/JCI85939 27482889

20. Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2342–54. Epub 2017/06/21. doi: 10.1016/j.bbadis.2017.06.010 28629718

21. Mariani LH, Eddy S, Martini S, Eichinger F, Godfrey B, Nair V, et al. Redefining Nephrotic Syndrome in Molecular Terms: Outcome-associated molecular clusters and patient stratification with noninvasive surrogate biomarkers. bioRxiv. 2018:427880. doi: 10.1101/427880

22. Chung CF, Kitzler T, Kachurina N, Pessina K, Babayeva S, Bitzan M, et al. Intrinsic tumor necrosis factor-alpha pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS One. 2019;14(5):e0216426. Epub 2019/05/17. doi: 10.1371/journal.pone.0216426 31095586

23. Bennett MR, Czech KA, Arend LJ, Witte DP, Devarajan P, Potter SS. Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli. Nephron Exp Nephrol. 2007;107(1):e30–40. doi: 10.1159/000106775 17684420

24. Hodgin JB, Borczuk AC, Nasr SH, Markowitz GS, Nair V, Martini S, et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am J Pathol. 2010;177(4):1674–86. Epub 2010/09/18. doi: 10.2353/ajpath.2010.090746 20847290

25. Schwab K, Witte DP, Aronow BJ, Devarajan P, Potter SS, Patterson LT. Microarray analysis of focal segmental glomerulosclerosis. Am J Nephrol. 2004;24(4):438–47. Epub 2004/08/17. doi: 10.1159/000080188 15308877

26. Tong J, Xie J, Ren H, Liu J, Zhang W, Wei C, et al. Comparison of Glomerular Transcriptome Profiles of Adult-Onset Steroid Sensitive Focal Segmental Glomerulosclerosis and Minimal Change Disease. PLoS One. 2015;10(11):e0140453. Epub 2015/11/05. doi: 10.1371/journal.pone.0140453 26536600

27. Kreepala C, Famulski KS, Chang J, Halloran PF. Comparing molecular assessment of implantation biopsies with histologic and demographic risk assessment. Am J Transplant. 2013;13(2):415–26. doi: 10.1111/ajt.12043 23282320

28. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17(8):952–60. Epub 2011/08/02. doi: 10.1038/nm.2411 21804539

29. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012;23(12):2051–9. Epub 2012/11/10. doi: 10.1681/ASN.2012030302 23138488

30. Besbas N, Kalyoncu M, Cil O, Ozgul RK, Bakkaloglu A, Ozaltin F. MCP1 2518 A/G polymorphism affects progression of childhood focal segmental glomerulosclerosis. Renal failure. 2015;37(9):1435–9. Epub 2015/09/04. doi: 10.3109/0886022X.2015.1074474 26335292

31. Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Kolodziejczyk Z. Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scand J Urol Nephrol. 2011;45(1):52–9. Epub 2010/11/03. doi: 10.3109/00365599.2010.526140 21034351

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden