40-Hz auditory steady-state responses and the complex information processing: An exploratory study in healthy young males

Autoři: Vykinta Parciauskaite aff001;  Aleksandras Voicikas aff001;  Vytautas Jurkuvenas aff002;  Povilas Tarailis aff001;  Mindaugas Kraulaidis aff001;  Evaldas Pipinis aff001;  Inga Griskova-Bulanova aff001
Působiště autorů: Vilnius University, Institute of Biosciences, Vilnius, Lithuania aff001;  Vilnius University, Institute of Psychology, Vilnius, Lithuania aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223127


Electroencephalographic (EEG) activity in the gamma (30–80 Hz) range is related to a variety of sensory and cognitive processes which are frequently impaired in schizophrenia. Auditory steady-state response at 40-Hz (40-Hz ASSR) is utilized as an index of gamma activity and is proposed as a biomarker of schizophrenia. Nevertheless, the link between ASSRs and cognitive functions is not clear. This study explores a possible relationship between the performance on cognitive tasks and the 40-Hz ASSRs in a controlled uniform sample of young healthy males, as age and sex may have complex influence on ASSRs. Twenty-eight young healthy male volunteers participated (mean age ± SD 25.8±3.3) in the study. The 40-Hz click trains (500 ms) were presented 150 times with an inter-stimulus interval set at 700–1000 ms. The phase-locking index (PLI) and event-related power perturbation (ERSP) of the ASSR were calculated in the 200–500 ms latency range, which corresponds to the steady part of the response. The Psychology Experiment Building Language (PEBL) task battery was used to assess five cognitive subdomains: the Choice response time task, the Stroop test, the Tower of London test, the Lexical decision task and the Semantic categorisation task. Pearson‘s correlation coefficients were calculated to access the relationships; no multiple-test correction was applied as the tests were explorative in nature. A significant positive correlation was observed for the late-latency gamma and the mean number of steps in the Tower of London task reflecting planning and problem-solving abilities. These findings support the concept that 40-Hz ASSR might highlight top-down mechanisms which are related to cognitive functioning. Therefore, 40-Hz ASSRs can be used to explore the relationship between cognitive functioning and neurophysiological indices of brain activity.

Klíčová slova:

Attention – Cognition – Cognitive impairment – Decision making – Electroencephalography – Information processing – Schizophrenia – Working memory


1. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. Perception’s shadow: long-distance synchronization of human brain activity. Nature. 1999; 397: 430–433. https://doi.org/10.1038/17120 9989408

2. Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci Off J Soc Neurosci. 1996; 16: 4240–4249. https://doi.org/10.1523/JNEUROSCI.16-13-04240.1996 8753885

3. Villena-González M, Palacios-García I, Rodríguez E, López V. Beta Oscillations Distinguish Between Two Forms of Mental Imagery While Gamma and Theta Activity Reflects Auditory Attention. Front Hum Neurosci. 2018; 12: 389. https://doi.org/10.3389/fnhum.2018.00389 30337865

4. Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK. Top-down attentional processing enhances auditory evoked gamma band activity. Neuroreport. 2003; 14: 683–686. https://doi.org/10.1097/00001756-200304150-00005 12692463

5. Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C. Attention Modulates Gamma-band Oscillations Differently in the Human Lateral Occipital Cortex and Fusiform Gyrus. Cereb Cortex. 2005; 15: 654–662. https://doi.org/10.1093/cercor/bhh167 15371290

6. Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Näätänen R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature. 1993; 364: 59–60. https://doi.org/10.1038/364059a0 8316297

7. Yordanova J, Kolev V, Demiralp T. The phase-locking of auditory gamma band responses in humans is sensitive to task processing. Neuroreport. 1997; 8: 3999–4004. https://doi.org/10.1097/00001756-199712220-00029 9462481

8. Gruber T, Tsivilis D, Montaldi D, Müller MM. Induced gamma band responses: an early marker of memory encoding and retrieval. Neuroreport. 2004; 15: 1837–1841. https://doi.org/10.1097/01.wnr.0000137077.26010.12 15257158

9. Herrmann CS, Munk MHJ, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci. 2004; 8: 347–355. https://doi.org/10.1016/j.tics.2004.06.006 15335461

10. Kucewicz MT, Berry BM, Kremen V, Brinkmann BH, Sperling MR, Jobst BC, et al. Dissecting gamma frequency activity during human memory processing. Brain J Neurol. 2017; 140: 1337–1350. https://doi.org/10.1093/brain/awx043 28335018

11. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci Off J Soc Neurosci. 1998; 18: 4244–4254. https://doi.org/10.1523/JNEUROSCI.18-11-04244.1998 9592102

12. Andino SLG, Michel CM, Thut G, Landis T, Peralta RG. Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain. Hum Brain Mapp. 2005; 24: 50–58. https://doi.org/10.1002/hbm.20056 15593272

13. Csibra G, Davis G, Spratling MW, Johnson MH. Gamma oscillations and object processing in the infant brain. Science. 2000; 290: 1582–1585. https://doi.org/10.1126/science.290.5496.1582 11090357

14. Benasich AA, Gou Z, Choudhury N, Harris KD. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Rese. 2008; 195: 215–222. https://doi.org/10.1016/j.bbr.2008.08.049 18831992

15. Ford JM, Gray M, Faustman WO, Heinks TH, Mathalon DH. Reduced gamma-band coherence to distorted feedback during speech when what you say is not what you hear. Int J Psychophysiol. 2005; 57: 143–150. https://doi.org/10.1016/j.ijpsycho.2005.03.002 15967529

16. Palva S, Palva JM, Shtyrov Y, Kujala T, Ilmoniemi RJ, Kaila K, et al. Distinct gamma-band evoked responses to speech and non-speech sounds in humans. J Neurosci Off J Soc Neurosci. 2002; 22: RC211. https://doi.org/10.1523/JNEUROSCI.22-04-j0003.2002

17. Bora E, Yücel M, Pantelis C. Cognitive Impairment in Schizophrenia and Affective Psychoses: Implications for DSM-V Criteria and Beyond. Schizophr Bull. 2010; 36: 36–42. https://doi.org/10.1093/schbul/sbp094 19776206

18. Deluca J. Information processing speed: How fast, how slow, and how come? Information processing speed in clinical populations. Philadelphia, PA, US: Taylor & Francis; 2008. pp. 265–273.

19. Senkowski D, Gallinat J. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry. 2015; 77: 1010–1019. https://doi.org/10.1016/j.biopsych.2015.02.034 25847179

20. Shin Y-W, O’Donnell BF, Youn S, Kwon JS. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011; 8: 288–296. https://doi.org/10.4306/pi.2011.8.4.288 22216037

21. Thuné H, Recasens M, Uhlhaas PJ. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-analysis. JAMA Psychiatry. 2016; 73: 1145–1153. https://doi.org/10.1001/jamapsychiatry.2016.2619 27732692

22. Picton TW, John MS, Purcell DW, Plourde G. Human auditory steady-state responses: the effects of recording technique and state of arousal. Anesth Analg. 2003; 97: 1396–1402. https://doi.org/10.1213/01.ANE.0000082994.22466.DD 14570657

23. Brenner CA, Krishnan GP, Vohs JL, Ahn W-Y, Hetrick WP, Morzorati SL, et al. Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull. 2009; 35: 1065–1077. https://doi.org/10.1093/schbul/sbp091 19726534

24. Isomura S, Onitsuka T, Tsuchimoto R, Nakamura I, Hirano S, Oda Y, et al. Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses. J Affect Disord. 2016; 190: 800–806. https://doi.org/10.1016/j.jad.2015.11.034 26625092

25. O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013; 62: 101–112. https://doi.org/10.1016/B978-0-7020-5307-8.00006-5 24053034

26. Hamm JP, Gilmore CS, Picchetti NAM, Sponheim SR, Clementz BA. Abnormalities of Neuronal Oscillations and Temporal Integration to Low- and High-Frequency Auditory Stimulation in Schizophrenia. Biol Psychiatry. 2011; 69: 989–996. https://doi.org/10.1016/j.biopsych.2010.11.021 21216392

27. Rass O, Forsyth JK, Krishnan GP, Hetrick WP, Klaunig MJ, Breier A, et al. Auditory steady state response in the schizophrenia, first-degree relatives, and schizotypal personality disorder. Schizophr Res. 2012; 136: 143–149. https://doi.org/10.1016/j.schres.2012.01.003 22285558

28. Spencer KM, Salisbury DF, Shenton ME, McCarley RW. γ-Band Auditory Steady-State Responses Are Impaired in First Episode Psychosis. Biol Psychiatry. 2008; 64: 369–375. https://doi.org/10.1016/j.biopsych.2008.02.021 18400208

29. Tada M, Nagai T, Kirihara K, Koike S, Suga M, Araki T, et al. Differential Alterations of Auditory Gamma Oscillatory Responses Between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia. Cereb Cortex. 2016; 26: 1027–1035. https://doi.org/10.1093/cercor/bhu278 25452567

30. Teale P, Carlson J, Rojas D, Reite M. Reduced laterality of the source locations for generators of the auditory steady-state field in schizophrenia. Biol Psychiatry. 2003; 54: 1149–1153. https://doi.org/10.1016/S0006-3223(03)00411-6 14643081

31. Spencer KM, Niznikiewicz MA, Nestor PG, Shenton ME, McCarley RW. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci. 2009; 10: 85. https://doi.org/10.1186/1471-2202-10-85 19619324

32. Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, et al. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry. 2006; 60: 1231–1240. https://doi.org/10.1016/j.biopsych.2006.03.055 16893524

33. Koenig T, van Swam C, Dierks T, Hubl D. Is gamma band EEG synchronization reduced during auditory driving in schizophrenia patients with auditory verbal hallucinations? Schizophr Res. 2012; 141: 266–270. https://doi.org/10.1016/j.schres.2012.07.016 22892287

34. Reyes SA, Salvi RJ, Burkard RF, Coad ML, Wack DS, Galantowicz PJ, et al. PET imaging of the 40 Hz auditory steady state response. Hear Res. 2004; 194: 73–80. https://doi.org/10.1016/j.heares.2004.04.001 15276678

35. Pastor M, Artieda J, Arbizu J, Martí-Climent J, Penuelas I, Masdeu JC. Activation of Human Cerebral and Cerebellar Cortex by Auditory Stimulation at 40 Hz. J Neurosci Off J Soc Neurosci. 2003; 22: 10501–6. https://doi.org/10.1523/JNEUROSCI.22-23-10501.2002 12451150

36. Bish JP, Martin T, Houck J, Ilmoniemi RJ, Tesche C. Phase shift detection in thalamocortical oscillations using magnetoencephalography in humans. Neurosci Lett. 2004; 362: 48–52. https://doi.org/10.1016/j.neulet.2004.02.032 15147778

37. Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M. Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol Potentials Sect. 1993; 88: 389–396. https://doi.org/10.1016/0168-5597(93)90015-H

38. Górska U, Binder M. Low and medium frequency auditory steady-state responses decrease during NREM sleep. Int J Psychophysiol Off J Int Organ Psychophysiol. 2018; https://doi.org/10.1016/j.ijpsycho.2018.11.003 30452935

39. Griskova I, Morup M, Parnas J, Ruksenas O, Arnfred SM. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal. Exp Brain Res. 2007; 183: 133–138. https://doi.org/10.1007/s00221-007-1111-0 17828530

40. Griskova-Bulanova I, Ruksenas O, Dapsys K, Maciulis V, Arnfred SMH. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs). Clin Neurophysiol. 2011; 122: 1541–1548. https://doi.org/10.1016/j.clinph.2011.02.005 21377412

41. Gander PE, Bosnyak DJ, Roberts LE. Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention. Hear Res. 2010; 268: 213–226. https://doi.org/10.1016/j.heares.2010.06.003 20547217

42. Skosnik PD, Krishnan GP, O’Donnell BF. The effect of selective attention on the gamma-band auditory steady-state response. Neurosci Lett. 2007; 420: 223–228. https://doi.org/10.1016/j.neulet.2007.04.072 17556098

43. Voicikas A, Niciute I, Ruksenas O, Griskova-Bulanova I. Effect of attention on 40Hz auditory steady-state response depends on the stimulation type: Flutter amplitude modulated tones versus clicks. Neurosci Lett. 2016; 629: 215–220. https://doi.org/10.1016/j.neulet.2016.07.019 27424792

44. Logue SF, Gould TJ. The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav. 2014; 123: 45–54. https://doi.org/10.1016/j.pbb.2013.08.007 23978501

45. van Deursen JA, Vuurman EFPM, van Kranen-Mastenbroek VHJM, Verhey FRJ, Riedel WJ. 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2011; 32: 24–30. https://doi.org/10.1016/j.neurobiolaging.2009.01.002 19237225

46. Puvvada KC, Summerfelt A, Du X, Krishna N, Kochunov P, Rowland LM, et al. Delta Vs Gamma Auditory Steady State Synchrony in Schizophrenia. Schizophr Bull. 2018; 44: 378–387. https://doi.org/10.1093/schbul/sbx078 29036430

47. Sun C, Zhou P, Wang C, Fan Y, Tian Q, Dong F, et al. Defects of Gamma Oscillations in Auditory Steady-State Evoked Potential of Schizophrenia. Shanghai Arch Psychiatry. 2018; 30: 27–38. doi: 10.11919/j.issn.1002-0829.217078 29719356

48. Leonhardt BL, Vohs JL, Bartolomeo LA, Visco A, Hetrick WP, Bolbecker AR, et al. Relationship of Metacognition and Insight to Neural Synchronization and Cognitive Function in Early Phase Psychosis. Clin EEG Neurosci. 2019; 1550059419857971. https://doi.org/10.1177/1550059419857971 31241355

49. Kirihara K, Rissling AJ, Swerdlow NR, Braff DL, Light GA. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatry. 2012; 71: 873–880. https://doi.org/10.1016/j.biopsych.2012.01.016 22361076

50. Rass O, Krishnan G, Brenner CA, Hetrick WP, Merrill CC, Shekhar A, et al. Auditory steady state response in bipolar disorder: relation to clinical state, cognitive performance, medication status, and substance disorders. Bipolar Disord. 2010; 12: 793–803. https://doi.org/10.1111/j.1399-5618.2010.00871.x 21176026

51. Melynyte S, Pipinis E, Genyte V, Voicikas A, Rihs T, Griskova-Bulanova I. 40 Hz Auditory Steady-State Response: The Impact of Handedness and Gender. Brain Topogr. 2018; 31: 419–429. https://doi.org/10.1007/s10548-017-0611-x 29218677

52. Griskova-Bulanova I, Dapsys K, Maciulis V. Does brain ability to synchronize with 40 Hz auditory stimulation change with age? Acta Neurobiol Exp (Warsz). 2013; 73: 564–570.

53. Oda Y, Onitsuka T, Tsuchimoto R, Hirano S, Oribe N, Ueno T, et al. Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PloS One. 2012; 7: e39955. https://doi.org/10.1371/journal.pone.0039955 22792199

54. Ross B, Herdman AT, Pantev C. Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex. 2005; 15: 2029–2039. https://doi.org/10.1093/cercor/bhi078 15772375

55. Draganova R, Ross B, Wollbrink A, Pantev C. Cortical steady-state responses to central and peripheral auditory beats. Cereb Cortex. 2008; 18: 1193–1200. https://doi.org/10.1093/cercor/bhm153 17827173

56. Gilmore CS, Clementz BA, Berg P. Hemispheric differences in auditory oddball responses during monaural versus binaural stimulation. Int J Psychophysiol. 2009; 73: 326–333. https://doi.org/10.1016/j.ijpsycho.2009.05.005 19463866

57. Shaw ME, Hämäläinen MS, Gutschalk A. How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. Neuroimage. 2013; 74: 22–29. https://doi.org/10.1016/j.neuroimage.2013.02.002 23415949

58. Violante IR, Li LM, Carmichael DW, Lorenz R, Leech R, Hampshire A, et al. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Hamilton R, editor. eLife. 2017; 6: e22001. https://doi.org/10.7554/eLife.22001 28288700

59. Takeuchi H, Sugiura M, Sassa Y, Sekiguchi A, Yomogida Y, Taki Y, et al. Neural Correlates of the Difference between Working Memory Speed and Simple Sensorimotor Speed: An fMRI Study. PLoS One. 2012; 7. https://doi.org/10.1371/journal.pone.0030579 22291992

60. Griskova-Bulanova I, Grikšienė R, Korostenskaja M, Ruksenas O. 40 Hz auditory steady-state response in females: When is it better to entrain? Acta Neurobiol Exp (Warsz). 2014; 74: 91–7.

61. Mueller ST, Piper BJ. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J Neurosci Methods. 2014; 222: 250–259. https://doi.org/10.1016/j.jneumeth.2013.10.024 24269254

62. Jurkuvėnas V. Relations among age, simple information processing speed, complex information processing speed, memory, and set-shifting. Psychology. 2015; 51: 81–98. https://doi.org/10.15388/Psichol.2015.51.8258

63. Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front Neurosci. 2014; 8. https://doi.org/10.3389/fnins.2014.00150 24966810

64. Phillips LH, Bull R, Adams E, Fraser L. Positive mood and executive function: evidence from stroop and fluency tasks. Emot Wash DC. 2002; 2: 12–22. https://doi.org/10.1037/1528-3542.2.1.12

65. Kremen WS, Jacobson KC, Panizzon MS, Xian H, Eaves LJ, Eisen SA, et al. Factor structure of planning and problem-solving: a behavioral genetic analysis of the Tower of London task in middle-aged twins. Behav Genet. 2009; 39: 133–144. https://doi.org/10.1007/s10519-008-9242-z 19085096

66. Hargreaves IS, White M, Pexman PM, Pittman D, Goodyear BG. The question shapes the answer: the neural correlates of task differences reveal dynamic semantic processing. Brain Lang. 2012; 120: 73–78. https://doi.org/10.1016/j.bandl.2011.10.004 22078639

67. Mørup M, Hansen LK, Arnfred SM. ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials. J Neurosci Methods. 2007; 161: 361–368. https://doi.org/10.1016/j.jneumeth.2006.11.008 17204335

68. Ross B, Picton TW, Pantev C. Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res. 2002; 165: 68–84. https://doi.org/10.1016/S0378-5955(02)00285-X 12031517

69. Korostenskaja M, Ruksenas O, Pipinis E, Griskova-Bulanova I. Phase-locking index and power of 40-Hz auditory steady-state response are not related to major personality trait dimensions. Exp Brain Res. 2016; 234: 711–719. https://doi.org/10.1007/s00221-015-4494-3 26586270

70. Kaiser J, Lutzenberger W. Human gamma-band activity: a window to cognitive processing. Neuroreport. 2005; 16: 207–211. https://doi.org/10.1097/00001756-200502280-00001 15706221

71. Unterrainer JM, Rahm B, Kaller CP, Leonhart R, Quiske K, Hoppe-Seyler K, et al. Planning abilities and the Tower of London: is this task measuring a discrete cognitive function? J Clin Exp Neuropsychol. 2004; 26: 846–856. https://doi.org/10.1080/13803390490509574 15370380

72. Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS Consensus Cognitive Battery, Part 1: Test Selection, Reliability, and Validity. Am J Psychiatry. 2008; 165: 203–213. https://doi.org/10.1176/appi.ajp.2007.07010042 18172019

73. Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004; 68: 283–297. https://doi.org/10.1016/j.schres.2003.09.011 15099610

74. Díez Á, Suazo V, Casado P, Martín-Loeches M, Perea MV, Molina V. Frontal gamma noise power and cognitive domains in schizophrenia. Psychiatry Res Neuroimaging. 2014; 221: 104–113. https://doi.org/10.1016/j.pscychresns.2013.11.001 24300084

75. Díez Á, Suazo V, Casado P, Martín-Loeches M, Molina V. Gamma Power and Cognition in Patients with Schizophrenia and Their First-Degree Relatives. Neuropsychobiology. 2014; 69: 120–128. https://doi.org/10.1159/000356970 24732388

76. Cazalis F, Valabrègue R, Pélégrini‐Issac M, Asloun S, Robbins TW, Granon S. Individual differences in prefrontal cortical activation on the Tower of London planning task: implication for effortful processing. Eur J Neurosci. 2003; 17: 2219–2225. https://doi.org/10.1046/j.1460-9568.2003.02633.x 12786989

77. Halpern DF, LaMay ML. The Smarter Sex: A Critical Review of Sex Differences in Intelligence. Educ Psychol Rev. 2000; 12: 229–246. https://doi.org/10.1023/A:1009027516424

78. Verhaeghen P. The Elements of Cognitive Aging: Meta-Analyses of Age-Related Differences in Processing Speed and Their Consequences. Oxford University Press; 2013. https://doi.org/10.1093/acprof:oso/9780195368697.001.0001

79. Edgar JC, Fisk CL, Chen Y-H, Stone-Howell B, Hunter MA, Huang M, et al. By our bootstraps: Comparing methods for measuring auditory 40 Hz steady-state neural activity. Psychophysiology. 2017; 54: 1110–1127. https://doi.org/10.1111/psyp.12876 28421620

80. Giani AS, Ortiz E, Belardinelli P, Kleiner M, Preissl H, Noppeney U. Steady-state responses in MEG demonstrate information integration within but not across the auditory and visual senses. NeuroImage. 2012; 60: 1478–1489. https://doi.org/10.1016/j.neuroimage.2012.01.114 22305992

81. Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA. 1981; 78: 2643–2647. https://doi.org/10.1073/pnas.78.4.2643 6941317

82. Picton TW, John MS, Dimitrijevic A, Purcell D. Human auditory steady-state responses. Int J Audiol. 2003; 42: 177–219. https://doi.org/10.3109/14992020309101316 12790346

Článek vyšel v časopise


2019 Číslo 10
Nejčtenější tento týden