Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1

Autoři: Yi Zuo aff001;  J. Charles Whitbeck aff001;  Gabriel J. Haila aff002;  Abraham A. Hakim aff003;  Paul W. Rothlauf aff003;  Roselyn J. Eisenberg aff004;  Gary H. Cohen aff001;  Claude Krummenacher aff003
Působiště autorů: Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff001;  Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America aff002;  Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America aff003;  Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America aff004;  Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223299


Oral herpes is a highly prevalent infection caused by herpes simplex virus 1 (HSV-1). After an initial infection of the oral cavity, HSV-1 remains latent in sensory neurons of the trigeminal ganglia. Episodic reactivation of the virus leads to the formation of mucocutaneous lesions (cold sores), but asymptomatic reactivation accompanied by viral shedding is more frequent and allows virus spread to new hosts. HSV-1 DNA has been detected in many oral tissues. In particular, HSV-1 can be found in periodontal lesions and several studies associated its presence with more severe periodontitis pathologies. Since gingival fibroblasts may become exposed to salivary components in periodontitis lesions, we analyzed the effect of saliva on HSV-1 and -2 infection of these cells. We observed that human gingival fibroblasts can be infected by HSV-1. However, pre-treatment of these cells with saliva extracts from some but not all individuals led to an increased susceptibility to infection. Furthermore, the active saliva could expand HSV-1 tropism to cells that are normally resistant to infection due to the absence of HSV entry receptors. The active factor in saliva was partially purified and comprised high molecular weight complexes of glycoproteins that included secretory Immunoglobulin A. Interestingly, we observed a broad variation in the activity of saliva between donors suggesting that this activity is selectively present in the population. The active saliva factor, has not been isolated, but may lead to the identification of a relevant biomarker for susceptibility to oral herpes. The presence of a salivary factor that enhances HSV-1 infection may influence the risk of oral herpes and/or the severity of associated oral pathologies.

Klíčová slova:

Antibodies – Fibroblasts – Glycoproteins – Herpes simplex virus – Herpesviruses – Saliva – Herpes simplex virus-1


1. McQuillan G, Kruszon-Moran D, Flagg EW, Paulose-Ram R. Prevalence of herpes simplex virus type 1 and type 2 in persons aged 14–49: United States, 2015–2016. NCHS Data Brief. 2018;(304):1–8. 29442994

2. Arduino PG, Porter SR. Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 2008;37(2):107–21. doi: 10.1111/j.1600-0714.2007.00586.x 18197856

3. Wald A, Ericsson M, Krantz E, Selke S, Corey L. Oral shedding of herpes simplex virus type 2. Sex Transm Infect. 2004;80(4):272–6. doi: 10.1136/sti.2003.007823 15295123

4. Roizman B, Knipe DM, Whitley RJ. Herpes simplex viruses. In: Knipe DM, Howley PM, editors. Fields Virology. 2. Fifth ed. Philadelphia: Lippincott Williams and Wilkins; 2007. p. 2502–601.

5. Ramchandani M, Kong M, Tronstein E, Selke S, Mikhaylova A, Magaret A, et al. Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults. Sex Transm Dis. 2016;43(12):756–60. doi: 10.1097/OLQ.0000000000000522 27835628

6. Gilbert SC. Oral shedding of herpes simplex virus type 1 in immunocompetent persons. J Oral Pathol Med. 2006;35(9):548–53. doi: 10.1111/j.1600-0714.2006.00461.x 16968235

7. Miller CS, Danaher RJ. Asymptomatic shedding of herpes simplex virus (HSV) in the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):43–50. doi: 10.1016/j.tripleo.2007.06.011 17703961

8. Wald A, Corey L. Persistence in the population: epidemiology, transmission. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R and Yamanishi K, editors. Human herpesviruses: biology, therapy and immunoprophylaxis. Cambridge: Cambridge University Press; 2007.

9. Zhang SY, Casanova JL. Inborn errors underlying herpes simplex encephalitis: from TLR3 to IRF3. J Exp Med. 2015;212(9):1342–3. doi: 10.1084/jem.2129insight4 26304982

10. Gnann JW, Whitley RJ. Herpes simplex encephalitis: an update. Curr Infect Dis Rep. 2017;19(3):13. doi: 10.1007/s11908-017-0568-7 28251511

11. Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontology 2000. 2015;(69):28–45.

12. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ, CDC Periodontal Disease Surveillance workgroup. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20. doi: 10.1177/0022034512457373 22935673

13. Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol. 2000;15(6):341–9. 11154429

14. Kamma JJ, Contreras A, Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J Clin Periodontol. 2001;28(9):879–85. doi: 10.1034/j.1600-051x.2001.028009879.x 11493359

15. Bilichodmath S, Mangalekar SB, Sharma DC, Prabhakar AK, Reddy SB, Kalburgi NB, et al. Herpesviruses in chronic and aggressive periodontitis patients in an Indian population. J Oral Sci. 2009;51(1):79–86. 19325203

16. Saygun I, Kubar A, Ozdemir A, Yapar M, Slots J. Herpesviral-bacterial interrelationships in aggressive periodontitis. J Periodontal Res. 2004;39(4):207–12. doi: 10.1111/j.1600-0765.2004.00728.x 15206912

17. Grenier G, Gagnon G, Grenier D. Detection of herpetic viruses in gingival crevicular fluid of patients suffering from periodontal diseases: prevalence and effect of treatment. Oral Microbiol Immunol. 2009;24(6):506–9. doi: 10.1111/j.1399-302X.2009.00542.x 19832804

18. Ling LJ, Ho CC, Wu CY, Chen YT, Hung SL. Association between human herpesviruses and the severity of periodontitis. J Periodontol. 2004;75(11):1479–85. doi: 10.1902/jop.2004.75.11.1479 15633324

19. Ting M, Contreras A, Slots J. Herpesvirus in localized juvenile periodontitis. J Periodontal Res. 2000;35(1):17–25. doi: 10.1034/j.1600-0765.2000.035001017.x 10791705

20. Slots J, Sabeti M, Simon JH. Herpesviruses in periapical pathosis: an etiopathogenic relationship? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(3):327–31. doi: 10.1016/s1079-2104(03)00352-4 12973289

21. Hung SL, Chiang HH, Wu CY, Hsu MJ, Chen YT. Effects of herpes simplex virus type 1 infection on immune functions of human neutrophils. J Periodontal Res. 2012;47(5):635–44. doi: 10.1111/j.1600-0765.2012.01476.x 22471246

22. Wuest TR, Carr DJ. The role of chemokines during herpes simplex virus-1 infection. Front Biosci. 2008;13:4862–72. doi: 10.2741/3045 18508551

23. Thier K, Petermann P, Rahn E, Rothamel D, Bloch W, Knebel-Mörsdorf D. Mechanical barriers restrict invasion of herpes simplex virus 1 into human oral mucosa. J Virol. 2017;91(22):pii: e01295–17. doi: 10.1128/JVI.01295-17 28878080

24. Hung SL, Wang YH, Chen HW, Lee PL, Chen YT. Analysis of herpes simplex virus entering into cells of oral origin. Virus Res. 2002;86(1–2):59–69. doi: 10.1016/s0168-1702(02)00055-2 12076830

25. Hung SL, Cheng YY, Wang YH, Chang KW, Chen YT. Expression and roles of herpesvirus entry mediators A and C in cells of oral origin. Oral Microbiol Immunol. 2002;17(4):215–23. 12121471

26. Krummenacher C, Carfí A, Eisenberg RJ, Cohen GH. Entry of herpesviruses into cells: the Enigma variations. Adv Exp Med Biol. 2013;790:178–95. doi: 10.1007/978-1-4614-7651-1_10 23884592

27. Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes virus fusion and entry: a story with many characters. Viruses. 2012;4(5):800–32. doi: 10.3390/v4050800 22754650

28. Heldwein EE. Entry of herpesviruses into cells: more than one way to pull the trigger. Structure. 2009;17(2):147–9. doi: 10.1016/j.str.2009.01.003 19217384

29. Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci. 2008;65(11):1653–68. doi: 10.1007/s00018-008-7570-z 18351291

30. Stiles KM, Krummenacher C. Glycoprotein D actively induces rapid internalization of two nectin-1 isoforms during herpes simplex virus entry. Virology. 2010;399:109–19. doi: 10.1016/j.virol.2009.12.034 20089288

31. Stiles KM, Whitbeck JC, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C. Herpes simplex virus glycoprotein D interferes with binding of herpesvirus entry mediator to its ligands through downregulation and direct competition. J Virol. 2010;84(22):11646–60. doi: 10.1128/JVI.01550-10 20826693

32. Stiles KM, Milne RS, Cohen GH, Eisenberg RJ, Krummenacher C. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D. Virology. 2008;373(1):98–111. doi: 10.1016/j.virol.2007.11.012 18076965

33. Mizutani K, Takai Y. Nectin spot: a novel type of nectin-mediated cell adhesion apparatus. Biochem J. 2016;473(18):2691–715. doi: 10.1042/BCJ20160235 27621480

34. Yoon M, Spear PG. Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol. 2002;76(14):7203–8. doi: 10.1128/JVI.76.14.7203-7208.2002 12072519

35. Rahn E, Thier K, Petermann P, Rübsam M, Staeheli P, Iden S, et al. Epithelial barriers in murine skin during herpes simplex virus 1 infection: the role of tight junction formation. J Invest Dermatol. 2017;137(4):884–93. doi: 10.1016/j.jid.2016.11.027 27939379

36. Yu Z, Li S, Huang YY, Fong Y, Wong RJ. Calcium depletion enhances nectin-1 expression and herpes oncolytic therapy of squamous cell carcinoma. Cancer Gene Ther. 2007;14(8):738–47. doi: 10.1038/sj.cgt.7701062 17525764

37. Krummenacher C, Baribaud F, Ponce De Leon M, Baribaud I, Whitbeck JC, Xu R, et al. Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus. Virology. 2004;322(2):286–99. doi: 10.1016/j.virol.2004.02.005 15110526

38. Yu Z, Adusumilli PS, Eisenberg DP, Darr E, Ghossein RA, Li S, et al. Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. Mol Ther. 2007;15(1):103–13. doi: 10.1038/ 17164781

39. Dawes C, Pedersen AM, Villa A, Ekström J, Proctor GB, Vissink A, et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60(6):863–74. doi: 10.1016/j.archoralbio.2015.03.004 25841068

40. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res. 2008;7(5):1994–2006. doi: 10.1021/pr700764j 18361515

41. Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–320. doi: 10.3390/ijms13044295 22605979

42. Malamud D, Abrams WR, Barber CA, Weissman D, Rehtanz M, Golub E. Antiviral activities in human saliva. Adv Dent Res. 2011;23(1):34–7. doi: 10.1177/0022034511399282 21441478

43. Tabak LA. In defense of the oral cavity: the protective role of the salivary secretions. Pediatr Dent. 2006;28(2):110–7; discussion 92–8. 16708785

44. Nagashunmugam T, Malamud D, Davis C, Abrams WR, Friedman HM. Human submandibular saliva inhibits human immunodeficiency virus type 1 infection by displacing envelope glycoprotein gp120 from the virus. J Infect Dis. 1998;178(6):1635–41. doi: 10.1086/314511 9815215

45. Valimaa H, Waris M, Hukkanen V, Blankenvoorde MF, Nieuw Amerongen AV, Tenovuo J. Salivary defense factors in herpes simplex virus infection. J Dent Res. 2002;81(6):416–21. doi: 10.1177/154405910208100612 12097435

46. Heineman HS, Greenberg MS. Cell-protective effect of human saliva specific for herpes simplex virus. Arch Oral Biol. 1980;25(4):257–61. doi: 10.1016/0003-9969(80)90031-x 6255914

47. Gu M, Haraszthy GG, Collins AR, Bergey EJ. Identification of salivary proteins inhibiting herpes simplex virus 1 replication. Oral Microbiol Immunol. 1995;10(1):54–9. 7644274

48. Malamud D. Saliva as a diagnostic fluid. Dent Clin North Am. 2011;55(1):159–78. doi: 10.1016/j.cden.2010.08.004 21094724

49. Miller CG, Krummenacher C, Eisenberg RJ, Cohen GH, Fraser NW. Development of a syngenic murine B16 cell line-derived melanoma susceptible to destruction by neuroattenuated HSV-1. Mol Ther. 2001;3:160–8. doi: 10.1006/mthe.2000.0240 11237672

50. Martinez WM, Spear PG. Amino acid substitutions in the V domain of nectin-1 (HveC) that impair entry activity for herpes simplex virus types 1 and 2 but not for pseudorabies virus or bovine herpesvirus 1. J Virol. 2002;76(14):7255–62. doi: 10.1128/JVI.76.14.7255-7262.2002 12072525

51. Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996;87:427–36. doi: 10.1016/s0092-8674(00)81363-x 8898196

52. Warner MS, Martinez W, Geraghty RJ, Montgomery RI, Whitbeck JC, Xu R, et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by herpes simplex virus type 2, mutants of herpes simplex virus type 1 and pseudorabies virus. Virology. 1998;246:179–89. doi: 10.1006/viro.1998.9218 9657005

53. Handler CG, Cohen GH, Eisenberg RJ. Crosslinking of glycoprotein oligomers during herpes simplex virus type 1 entry. J Virol. 1996;70:6076–82. 8709231

54. Krummenacher C, Baribaud I, Ponce de Leon M, Whitbeck JC, Lou H, Cohen GH, et al. Localization of a binding site for herpes simplex virus glycoprotein D on the herpesvirus entry mediator C by using anti-receptor monoclonal antibodies. J Virol. 2000;74:10863–72. doi: 10.1128/jvi.74.23.10863-10872.2000 11069980

55. Terry-Allison T, Montgomery RI, Whitbeck JC, Xu R, Cohen GH, Eisenberg RJ, et al. HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J Virol. 1998;72:5802–10. 9621040

56. Krummenacher C, Rux AH, Whitbeck JC, Ponce de Leon M, Lou H, Baribaud I, et al. The first immunoglobulin-like domain of HveC is sufficient to bind herpes simplex virus gD with full affinity while the third domain is involved in oligomerization of HveC. J Virol. 1999;73:8127–37. 10482562

57. Tal-Singer R, Peng C, Ponce de Leon M, Abrams WR, Banfield BW, Tufaro F, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol. 1995;69(7):4471–83. 7769707

58. Dai L, DeFee MR, Cao Y, Wen J, Wen X, Noverr MC, et al. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS One. 2014;9(6):e101326. doi: 10.1371/journal.pone.0101326 24971655

59. Shukla SY, Singh YK, Shukla D. Role of nectin-1, HVEM, and PILR-alpha in HSV-2 entry into human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2009;50(6):2878–87. doi: 10.1167/iovs.08-2981 19234349

60. Cohen GH, Isola VJ, Kuhns J, Berman PW, Eisenberg RJ. Localization of discontinuous epitopes of herpes simplex virus glycoprotein D: use of a nondenaturing ("native" gel) system of polyacrylamide gel electrophoresis coupled with Western blotting. J Virol. 1986;60(1):157–66. 2427745

61. Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest. 2001;107(1):13–9. doi: 10.1172/JCI11837 11134172

62. Müller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology. 1993;187(3–5):233–56. doi: 10.1016/S0171-2985(11)80342-6 8330898

63. Müller HD, Caballé-Serrano J, Lussi A, Gruber R. Inhibitory effect of saliva on osteoclastogenesis in vitro requires toll-like receptor 4 signaling. Clin Oral Investig. 2017;21(8):2445–52. doi: 10.1007/s00784-016-2041-7 28101679

64. Pourgonabadi S, Müller HD, Mendes JR, Gruber R. Saliva initiates the formation of pro-inflammatory macrophages in vitro. Arch Oral Biol. 2017;73:295–301. doi: 10.1016/j.archoralbio.2016.10.012 27825074

65. Huang YY, Yu Z, Lin SF, Li S, Fong Y, Wong RJ. Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. J Clin Endocrinol Metab. 2007;92(5):1965–70. doi: 10.1210/jc.2007-0040 17327376

66. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005;6(1):90–8. doi: 10.1038/ni1144 15568026

67. Morel Y, Schiano de Colella JM, Harrop J, Deen KC, Holmes SD, Wattam TA, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol. 2000;165(8):4397–404. doi: 10.4049/jimmunol.165.8.4397 11035077

68. Petermann P, Thier K, Rahn E, Rixon FJ, Bloch W, Ozcelik S, et al. Entry mechanisms of herpes simplex virus 1 into murine epidermis: involvement of nectin-1 and herpesvirus entry mediator as cellular receptors. J Virol. 2015;89(1):262–74. doi: 10.1128/JVI.02917-14 25320325

69. Gupta R, Warren T, Wald A. Genital herpes. Lancet. 2007;370(9605):2127–37. doi: 10.1016/S0140-6736(07)61908-4 18156035

70. Roberts CM, Pfister JR, Spear SJ. Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. Sex Transm Dis. 2003;30(10):797–800. doi: 10.1097/01.OLQ.0000092387.58746.C7 14520181

71. Sondej M, Denny PA, Xie Y, Ramachandran P, Si Y, Takashima J, et al. Glycoprofiling of the Human Salivary Proteome. Clin Proteomics. 2009;5(1):52–68. doi: 10.1007/s12014-008-9021-0 20161393

72. Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol. 2013;5. doi: 10.3402/jom.v5i0.20401 23487566

73. Ghiasi H, Perng GC, Nesburn AB, Wechsler SL. Antibody-dependent enhancement of HSV-1 infection by anti-gK sera. Virus Res. 2000;68(2):137–44. doi: 10.1016/s0168-1702(00)00165-9 10958985

74. Huisman W, Martina BE, Rimmelzwaan GF, Gruters RA, Osterhaus AD. Vaccine-induced enhancement of viral infections. Vaccine. 2009;27(4):505–12. doi: 10.1016/j.vaccine.2008.10.087 19022319

75. Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 2018;19(2):206–24. doi: 10.15252/embr.201745302 29282215

76. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi: 10.1128/JB.00542-10 20656903

Článek vyšel v časopise


2019 Číslo 10