Significant alteration of liver metabolites by AAV8.Urocortin 2 gene transfer in mice with insulin resistance


Autoři: Young Chul Kim aff001;  Agnieszka D. Truax aff003;  Dimosthenis Giamouridis aff001;  N. Chin Lai aff001;  Tracy Guo aff001;  H. Kirk Hammond aff001;  Mei Hua Gao aff001
Působiště autorů: Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America aff001;  Department of Medicine, University of California San Diego, San Diego, California, United States of America aff002;  Metabolon, Inc, Research Triangle Park, Morrisville, North Carolina, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224428

Souhrn

Introduction

Urocortin 2 (Ucn2) is a 38-amino acid peptide of the corticotropin-releasing factor family. Intravenous (IV) delivery of an adeno-associated virus vector serotype 8 encoding Ucn2 (AAV8.Ucn2) increases insulin sensitivity and glucose disposal in mice with insulin resistance.

Objective

To determine the effects of Ucn2 on liver metabolome.

Methods

Six-week-old C57BL6 mice were divided into normal chow (CHOW)-fed and high fat diet (HFD)-fed groups. The animals received saline, AAV8 encoding no gene (AAV8.Empt) or AAV8.Ucn2 (2x1013 genome copy/kg, IV injection). Livers were isolated from CHOW-fed and HFD-fed mice and analyzed by untargeted metabolomics. Group differences were statistically analyzed.

Results

In CHOW-fed mice, AAV8.Ucn2 gene transfer (vs. saline) altered the metabolites in glycolysis, pentose phosphate, glycogen synthesis, glycogenolysis, and choline-folate-methionine signaling pathways. In addition, AAV8.Ucn2 gene transfer increased amino acids and peptides, which were associated with reduced protein synthesis. In insulin resistant (HFD-induced) mice, HFD (vs CHOW) altered 448 (112 increased and 336 decreased) metabolites and AAV8.Ucn2 altered 239 metabolites (124 increased and 115 reduced) in multiple pathways. There are 61 metabolites in 5 super pathways showed interactions between diet and AAV8.Ucn2 treatment. Among them, AAV8.Ucn2 gene transfer reversed HFD effects on 13 metabolites. Finally, plasma Ucn2 effects were determined using a 3-group comparison of HFD-fed mice that received AAV8.Ucn2, AAV.Empt or saline, where 18 metabolites that altered by HFD (15 increased and 3 decreased), but restored levels to that seen in CHOW-fed mice by increased plasma Ucn2.

Conclusions

Metabolomics study revealed that AAV8.Ucn2 gene transfer, through increased plasma Ucn2, provided counter-HFD effects in restoring hepatic metabolites to normal levels, which could be the underlying mechanisms for Ucn2 effects on increasing glucose disposal and reducing insulin assistance.

Klíčová slova:

Amino acid metabolism – Gene transfer – Glucose metabolism – Insulin – Metabolic pathways – Metabolites – Protein metabolism – Xenobiotic metabolism


Zdroje

1. Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98(5):2843–8. doi: 10.1073/pnas.051626398 11226328; PubMed Central PMCID: PMC30227.

2. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–11. doi: 10.1038/87936 11329063.

3. Kishimoto T, Pearse RV 2nd, Lin CR, Rosenfeld MG. A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle. Proc Natl Acad Sci U S A. 1995;92(4):1108–12. doi: 10.1073/pnas.92.4.1108 7755719; PubMed Central PMCID: PMC42647.

4. Stenzel P, Kesterson R, Yeung W, Cone RD, Rittenberg MB, Stenzel-Poore MP. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. Mol Endocrinol. 1995;9(5):637–45. doi: 10.1210/mend.9.5.7565810 7565810.

5. Chen A, Perrin M, Brar B, Li C, Jamieson P, Digruccio M, et al. Mouse corticotropin-releasing factor receptor type 2alpha gene: isolation, distribution, pharmacological characterization and regulation by stress and glucocorticoids. Mol Endocrinol. 2005;19(2):441–58. doi: 10.1210/me.2004-0300 15514029.

6. Chen A, Blount A, Vaughan J, Brar B, Vale W. Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1- and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology. 2004;145(5):2445–57. doi: 10.1210/en.2003-1570 14736736.

7. Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, et al. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A. 1995;92(7):2969–73. doi: 10.1073/pnas.92.7.2969 7708757; PubMed Central PMCID: PMC42340.

8. Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol. 2002;440(2–3):189–97. doi: 10.1016/s0014-2999(02)01428-0 12007535.

9. Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev. 2006;27(3):260–86. doi: 10.1210/er.2005-0034 16484629.

10. Paruthiyil S, Hagiwara SI, Kundassery K, Bhargava A. Sexually dimorphic metabolic responses mediated by CRF2 receptor during nutritional stress in mice. Biol Sex Differ. 2018;9(1):49. doi: 10.1186/s13293-018-0208-4 30400826; PubMed Central PMCID: PMC6218963.

11. Gao MH, Lai NC, Miyanohara A, Schilling JM, Suarez J, Tang T, et al. Intravenous adeno-associated virus serotype 8 encoding urocortin-2 provides sustained augmentation of left ventricular function in mice. Hum Gene Ther. 2013;24(9):777–85. doi: 10.1089/hum.2013.088 23931341; PubMed Central PMCID: PMC3768340.

12. Lai NC, Gao MH, Giamouridis D, Suarez J, Miyanohara A, Parikh J, et al. Intravenous AAV8 Encoding Urocortin-2 Increases Function of the Failing Heart in Mice. Hum Gene Ther. 2015;26(6):347–56. doi: 10.1089/hum.2014.157 25760560; PubMed Central PMCID: PMC4492611.

13. Kim YC, Giamouridis D, Lai NC, Guo T, Xia B, Fu Z, et al. Urocortin 2 Gene Transfer Reduces the Adverse Effects of a Western Diet on Cardiac Function in Mice. Hum Gene Ther. 2019;30(6):693–701. doi: 10.1089/hum.2018.150 30648430; PubMed Central PMCID: PMC6589493.

14. Giamouridis D, Gao MH, Lai NC, Tan Z, Kim YC, Guo T, et al. Effects of Urocortin 2 Versus Urocortin 3 Gene Transfer on Left Ventricular Function and Glucose Disposal. JACC Basic Transl Sci. 2018;3(2):249–64. doi: 10.1016/j.jacbts.2017.12.004 30062211; PubMed Central PMCID: PMC6059348.

15. Gao MH, Giamouridis D, Lai NC, Walenta E, Paschoal VA, Kim YC, et al. One-time injection of AAV8 encoding urocortin 2 provides long-term resolution of insulin resistance. JCI Insight. 2016;1(15):e88322. doi: 10.1172/jci.insight.88322 27699250; PubMed Central PMCID: PMC5033760.

16. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656–67. doi: 10.1021/ac901536h 19624122.

17. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9. doi: 10.1186/1758-2946-2-9 20955607; PubMed Central PMCID: PMC2984397.

18. Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, et al. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 2011;25(3):1028–39. doi: 10.1096/fj.10-168799 21148113; PubMed Central PMCID: PMC3042844.

19. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412–26. doi: 10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmrr72>3.0.co;2-8 10634967.

20. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6(4):275–7. doi: 10.1038/nmeth.1314 19305406.

21. Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. Clin Lipidol. 2013;8(6):659–67. doi: 10.2217/clp.13.67 24533033; PubMed Central PMCID: PMC3921899.

22. Vance JE, Vance DE. Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol. 2004;82(1):113–28. doi: 10.1139/o03-073 15052332.

23. Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50 Suppl:S311–6. doi: 10.1194/jlr.R800049-JLR200 18952570; PubMed Central PMCID: PMC2674712.

24. Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab. 2012;23(9):420–8. doi: 10.1016/j.tem.2012.06.005 22819213; PubMed Central PMCID: PMC3683958.

25. Chen S, Wang Z, Xu B, Mi X, Sun W, Quan N, et al. The Modulation of Cardiac Contractile Function by the Pharmacological and Toxicological Effects of Urocortin2. Toxicol Sci. 2015;148(2):581–93. doi: 10.1093/toxsci/kfv202 26342213; PubMed Central PMCID: PMC5009442.

26. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90. doi: 10.1016/s0092-8674(03)00929-2 14651849.

27. Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 2014;56(3):414–24. doi: 10.1016/j.molcel.2014.09.025 25458842; PubMed Central PMCID: PMC4268166.

28. Brennan L, Corless M, Hewage C, Malthouse JP, McClenaghan NH, Flatt PR, et al. 13C NMR analysis reveals a link between L-glutamine metabolism, D-glucose metabolism and gamma-glutamyl cycle activity in a clonal pancreatic beta-cell line. Diabetologia. 2003;46(11):1512–21. doi: 10.1007/s00125-003-1184-7 12955201.

29. Schugar RC, Huang X, Moll AR, Brunt EM, Crawford PA. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet. PLoS One. 2013;8(8):e74806. doi: 10.1371/journal.pone.0074806 24009777; PubMed Central PMCID: PMC3756977.

30. Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81. doi: 10.1146/annurev.nutr.012809.104810 20645850.

31. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012;28(2):159–65. doi: 10.1097/MOG.0b013e32834e7b4b 22134222; PubMed Central PMCID: PMC3601486.

32. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35. 3906008.

33. Hapala I, Marza E, Ferreira T. Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell. 2011;103(6):271–85. doi: 10.1042/BC20100144 21729000.

34. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206. doi: 10.1089/ars.2007.1672 18020963.

35. Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22(1):31–53. doi: 10.1016/j.cmet.2015.05.023 26118927; PubMed Central PMCID: PMC4487780.

36. Elhassan YS, Philp AA, Lavery GG. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J Endocr Soc. 2017;1(7):816–35. doi: 10.1210/js.2017-00092 29264533; PubMed Central PMCID: PMC5686634.


Článek vyšel v časopise

PLOS One


2019 Číslo 12