Respiratory syncytial virus exhibits differential tropism for distinct human placental cell types with Hofbauer cells acting as a permissive reservoir for infection

Autoři: Vladimir Bokun aff001;  John J. Moore aff002;  Robert Moore aff002;  Carrie C. Smallcombe aff001;  Terri J. Harford aff001;  Fariba Rezaee aff001;  Frank Esper aff001;  Giovanni Piedimonte aff001
Působiště autorů: Center for Pediatric Research, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America aff001;  Department of Pediatrics, MetroHealth Medical Center, Cleveland, Ohio, United States of America aff002;  Center for Pediatric Infectious Diseases, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225767



Respiratory syncytial virus (RSV) is capable of transient viremia and extrapulmonary dissemination. Recently, this virus has been identified in fetal cord blood, suggesting the possibility of in utero acquisition in humans. Here, we assess permissivity and kinetics of RSV replication in primary human placental cells, examine their potential to transfer this infection to neighboring cells, and measure the inflammatory response evoked by the virus.

Methods and findings

Human placental villus tissue was collected immediately upon delivery and processed for isolation of placental cytotrophoblast, fibroblast, and macrophage (Hofbauer) cells. Isolated cells were infected with a recombinant RSV-A2 strain (rrRSV) expressing red fluorescent protein (RFP) and analyzed by fluorescence microscopy, Western blot, and quantitative PCR (qPCR). Based on RFP expression, rrRSV exhibited differential tropism for the three major placental cell types. Placental fibroblasts and Hofbauer cells were permissive and supported productive rrRSV replication. While infected cytotrophoblast cells expressed viral glycoprotein (G protein), only limited RSV replication was detected. Importantly, qPCR and fluorescence-focused unit assay revealed that the viral progeny remains trapped within infected Hofbauer cells for up to 30 days, with no release into surrounding media. Yet, Hofbauer cells passed the infection onto overlaid naïve 16HBE cells, suggesting contact-dependent trans-infection. Lastly, a significant increase in proinflammatory cytokines, particularly IL-6, TNF-alpha, and IFN-gamma was measured in the supernatant of infected Hofbauer cells by multiplex cytokine assay and conventional ELISA.


This study demonstrates that RSV can replicate in human placenta, exhibits differential tropism for distinct placental cell types, can be stored and transferred to neighboring cells by Hofbauer cells, and elicits an inflammatory response. It also supports the hypothesis that this respiratory virus can be vertically transferred to the fetus and potentially affect its development and the outcome of pregnancies.

Klíčová slova:

Cytokines – Fibroblasts – Fluorescence microscopy – Macrophages – placenta – Respiratory infections – Viral replication – Viral tropism


1. Campbell AP, Chien JW, Kuypers J, Englund JA, Wald A, Guthrie KA, et al. Respiratory virus pneumonia after hematopoietic cell transplantation (HCT): associations between viral load in bronchoalveolar lavage samples, viral RNA detection in serum samples, and clinical outcomes of HCT. J Infect Dis. 2010;201:1404–13. doi: 10.1086/651662 20350162

2. Halfhide CP, Flanagan BF, Brearey SP, Hunt JA, Fonceca AM, McNamara PS, et al. Respiratory syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants with severe bronchiolitis. J Infect Dis. 2011;204:451–8. doi: 10.1093/infdis/jir280 21742845

3. O'Donnell DR, McGarvey MJ, Tully JM, Balfour-Lynn IM, Openshaw PJ. Respiratory syncytial virus RNA in cells from the peripheral blood during acute infection. J Pediatr. 1998;133:272–4. doi: 10.1016/s0022-3476(98)70234-3 9709720

4. Rezaee F, Gibson LF, Piktel D, Othumpangat S, Piedimonte G. Respiratory syncytial virus infection in human bone marrow stromal cells. Am J Respir Cell Mol Biol. 2011;45:277–86. doi: 10.1165/rcmb.2010-0121OC 20971883

5. Waghmare A, Campbell AP, Xie H, Seo S, Kuypers J, Leisenring W, et al. Respiratory syncytial virus lower respiratory disease in hematopoietic cell transplant recipients: viral RNA detection in blood, antiviral treatment, and clinical outcomes. Clin Infect Dis. 2013;57:1731–41. doi: 10.1093/cid/cit639 24065324

6. Piedimonte G, Walton C, Samsell L. Vertical transmission of respiratory syncytial virus modulates pre- and postnatal innervation and reactivity of rat airways. PLoS One. 2013;8:e61309. doi: 10.1371/journal.pone.0061309 23637810

7. Brown PM, Harford TJ, Agrawal V, Belkadi A, Yen-Lieberman B, Rezaee F, et al. Prenatal exposure to respiratory syncytial virus alters postnatal immunity and airway smooth muscle contractility during early-life reinfections. PLoS One. 2017;12:e0168786. doi: 10.1371/journal.pone.0168786 28178290

8. Fonceca AM, Chopra A, Levy A, Noakes PS, Poh MW, Bear NL, et al. Infective respiratory syncytial virus is present in human cord blood samples and most prevalent during winter months. PLoS One. 2017;12:e0173738. doi: 10.1371/journal.pone.0173738 28437435

9. Manti S, Cuppari C, Lanzafame A, Salpietro C, Betta P, Leonardi S, et al. Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress. Pediatr Pulmonol. 2017;52:E81–E4. doi: 10.1002/ppul.23775 28834426

10. Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol. 2006;168:1210–26. doi: 10.2353/ajpath.2006.050482 16565496

11. Delorme-Axford E, Sadovsky Y, Coyne CB. Lipid raft- and SRC family kinase-dependent entry of coxsackievirus B into human placental trophoblasts. J Virol. 2013;87:8569–81. doi: 10.1128/JVI.00708-13 23720726

12. Zhang SL, Yue YF, Bai GQ, Shi L, Jiang H. Mechanism of intrauterine infection of hepatitis B virus. World J Gastroenterol. 2004;10:437–8. doi: 10.3748/wjg.v10.i3.437 14760774

13. Ma L, Alla NR, Li X, Mynbaev OA, Shi Z. Mother-to-child transmission of HBV: review of current clinical management and prevention strategies. Rev Med Virol. 2014;24:396–406. doi: 10.1002/rmv.1801 24956038

14. Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, Householder S, et al. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight. 2016;1:e88461. doi: 10.1172/jci.insight.88461 27595140

15. Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O'Neal JT, et al. Zika virus infects human placental macrophages. Cell Host Microbe. 2016;20:83–90. doi: 10.1016/j.chom.2016.05.015 27247001

16. Simoni MK, Jurado KA, Abrahams VM, Fikrig E, Guller S. Zika virus infection of Hofbauer cells. Am J Reprod Immunol. 2017;77:e12613.

17. Ingman K, Cookson VJ, Jones CJ, Aplin JD. Characterisation of Hofbauer cells in first and second trimester placenta: incidence, phenotype, survival in vitro and motility. Placenta. 2010;31:535–44. doi: 10.1016/j.placenta.2010.03.003 20347485

18. Schwartz DA. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch Gynecol Obstet. 2017;295:1361–8. doi: 10.1007/s00404-017-4361-5 28396992

19. Tang Z, Tadesse S, Norwitz E, Mor G, Abrahams VM, Guller S. Isolation of Hofbauer cells from human term placentas with high yield and purity. Am J Reprod Immunol. 2011;66:336–48. doi: 10.1111/j.1600-0897.2011.01006.x 21545365

20. Guerrero-Plata A, Casola A, Suarez G, Yu X, Spetch L, Peeples ME, et al. Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus. American journal of respiratory cell and molecular biology. 2006;34:320–9. doi: 10.1165/rcmb.2005-0287OC 16284360

21. Bokun V, Harford TJ, Rezaee F, Esper F, Yen-Lieberman B, Moore JJ, et al. Respiratory syncytial virus infects placental cells and villus explants in vitro. Am J Respir Crit Care Med. 2018;197:A2855.

22. Velázquez‑Cervantes MA, Martínez‑Castillo M, L. D. González‑García LD, Vargas‑Pavía TA, Martínez‑Salazar MG, Mancilla‑Herrera I, et al. The BeWo cell line derived from a human placental choriocarcinoma is permissive for respiratory syncytial virus infection. Virus Genes. 2019;55:406–10. doi: 10.1007/s11262-019-01646-2 30758769

23. Manti S, Cuppari C, Lanzafame A, Salpietro C, Leonardi S, Betta P, et al. Vertical transmission of respiratory syncytial virus infection in humans. Pediatr Pulmonol. 2017;52:E81–4. doi: 10.1002/ppul.23775 28834426

24. Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial vertical transmission during human pregnancy. Cell Host Microbe. 2017;21:561–7. doi: 10.1016/j.chom.2017.04.007 28494237

25. Lambert L, Sagfors AM, Openshaw PJ, Culley FJ. Immunity to RSV in early-life. Front Immunol. 2014;5:466. doi: 10.3389/fimmu.2014.00466 25324843

26. Sande CJ, Mutunga MN, Okiro EA, Medley GF, Cane PA, Nokes DJ. Kinetics of the neutralizing antibody response to respiratory syncytial virus infections in a birth cohort. J Med Virol. 2013;85:2020–5. doi: 10.1002/jmv.23696 23983183

27. Rohwedder A, Keminer O, Forster J, Schneider K, Schneider E, Werchau H. Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction. J Med Virol. 1998;54:320–7. doi: 10.1002/(sici)1096-9071(199804)54:4<320::aid-jmv13>;2-j 9557299

28. Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S, Raoul H, et al. Nipah virus uses leukocytes for efficient dissemination within a host. J Virol. 2011;85:7863–71. doi: 10.1128/JVI.00549-11 21593145

29. Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial vertical transmission during human pregnancy. Cell Host Microbe. 2017;21:561–7. doi: 10.1016/j.chom.2017.04.007 28494237

30. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C, Fang-Hoover J, et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe. 2016;20:155–66. doi: 10.1016/j.chom.2016.07.002 27443522

31. Koethe S, Avota E, Schneider-Schaulies S. Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. J Virol. 2012;86:9773–81. doi: 10.1128/JVI.00458-12 22761368

32. de Witte L, de Vries RD, van der Vlist M, Yuksel S, Litjens M, de Swart RL, et al. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog. 2008;4:e1000049. doi: 10.1371/journal.ppat.1000049 18421379

33. McDonald D. Dendritic cells and HIV-1 trans-infection. Viruses. 2010;2:1704–17. doi: 10.3390/v2081704 21994702

34. Rivera-Toledo E, Gómez B. Respiratory syncytial virus persistence in macrophages alters the profile of cellular gene expression. Viruses. 2012;4:3270–80. doi: 10.3390/v4123270 23342359

35. Monick MM, Cameron K, Staber J, Powers LS, Yarovinsky TO, Koland JG, et al. Activation of the epidermal growth factor receptor by respiratory syncytial virus results in increased inflammation and delayed apoptosis. J Biol Chem. 2005;280:2147–58. doi: 10.1074/jbc.M408745200 15542601

36. Nakamura-Lopez Y, Villegas-Sepulveda N, Sarmiento-Silva RE, Gomez B. Intrinsic apoptotic pathway is subverted in mouse macrophages persistently infected by RSV. Virus Res. 2011;158:98–107. doi: 10.1016/j.virusres.2011.03.016 21440589

37. Thomas KW, Monick MM, Staber JM, Yarovinsky T, Carter AB, Hunninghake GW. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem. 2002;277:492–501. doi: 10.1074/jbc.M108107200 11687577

38. Othumpangat S, Gibson L, Samsell L, Piedimonte G. NGF is an essential survival factor for bronchial epithelial cells during respiratory syncytial virus infection. PLoS One. 2009;4:e6444. doi: 10.1371/journal.pone.0006444 19649262

39. Reyes L, Golos TG. Hofbauer cells: their role in healthy and complicated pregnancy. Front Immunol. 2018;9:2628. doi: 10.3389/fimmu.2018.02628 30498493

40. Raghupathy R, Kalinka J. Cytokine imbalance in pregnancy complications and its modulation. Front Biosci. 2008;13:985–94. doi: 10.2741/2737 17981605

41. Makhseed M, Raghupathy R, Azizieh F, Al-Azemi MM, Hassan NA, Bandar A. Mitogen-induced cytokine responses of maternal peripheral blood lymphocytes indicate a differential Th-type bias in normal pregnancy and pregnancy failure. Am J Reprod Immunol. 1999;42:273–81. doi: 10.1111/j.1600-0897.1999.tb00101.x 10584981

42. Raghupathy R, Makhseed M, Azizieh F, Omu A, Gupta M, Farhat R. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Human reproduction. 2000;15:713–8. doi: 10.1093/humrep/15.3.713 10686225

43. Keelan JA, Marvin KW, Sato TA, Coleman M, McCowan LM, Mitchell MD. Cytokine abundance in placental tissues: evidence of inflammatory activation in gestational membranes with term and preterm parturition. Am J Obstet Gynecol. 1999;181:1530–6. doi: 10.1016/s0002-9378(99)70400-x 10601939

44. Nakabayashi M, Sakura M, Takeda Y, Sato K. Elevated IL-6 in midtrimester amniotic fluid is involved with the onset of preeclampsia. Am J Reprod Immunol. 1998;39:329–34. doi: 10.1111/j.1600-0897.1998.tb00526.x 9602251

45. Yabe S, Alexenko AP, Amita M, Yang Y, Schust DJ, Sadovsky Y, et al. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc Natl Acad Sci U S A. 2016;113:E2598–E607. doi: 10.1073/pnas.1601630113 27051068

Článek vyšel v časopise


2019 Číslo 12