Robust, automated sleep scoring by a compact neural network with distributional shift correction

Autoři: Zeke Barger aff001;  Charles G. Frye aff001;  Danqian Liu aff003;  Yang Dan aff001;  Kristofer E. Bouchard aff001
Působiště autorů: Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America aff001;  Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California, United States of America aff002;  Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America aff003;  Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224642


Studying the biology of sleep requires the accurate assessment of the state of experimental subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learning applied to electroencephalogram and electromyogram data has shown great promise as a sleep scoring method, approaching the limits of inter-rater reliability. As with any machine learning algorithm, the inputs to a sleep scoring classifier are typically standardized in order to remove distributional shift caused by variability in the signal collection process. However, in scientific data, experimental manipulations introduce variability that should not be removed. For example, in sleep scoring, the fraction of time spent in each arousal state can vary between control and experimental subjects. We introduce a standardization method, mixture z-scoring, that preserves this crucial form of distributional shift. Using both a simulated experiment and mouse in vivo data, we demonstrate that a common standardization method used by state-of-the-art sleep scoring algorithms introduces systematic bias, but that mixture z-scoring does not. We present a free, open-source user interface that uses a compact neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy that compares well to contemporary methods. This work provides a set of computational tools for the robust automation of sleep scoring.

Klíčová slova:

Algorithms – Electroencephalography – Electromyography – Machine learning – Machine learning algorithms – Neural networks – Preprocessing – Sleep


1. Stephenson R, Caron AM, Cassel DB, Kostela JC. Automated analysis of sleep–wake state in rats. Journal of Neuroscience Methods. 2009;184(2):263–274. doi: 10.1016/j.jneumeth.2009.08.014 19703489

2. Kohtoh S, Taguchi Y, Matsumoto N, Wada M, Huang Z, Urade Y. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram. Sleep and Biological Rhythms. 2008;6(3):163–171. doi: 10.1111/j.1479-8425.2008.00355.x

3. Bastianini S, Berteotti C, Gabrielli A, Vecchio FD, Amici R, Alexandre C, et al. SCOPRISM: A new algorithm for automatic sleep scoring in mice. Journal of Neuroscience Methods. 2014;235:277–284. doi: 10.1016/j.jneumeth.2014.07.018 25092499

4. Kreuzer M, Polta S, Gapp J, Schuler C, Kochs EF, Fenzl T. Sleep scoring made easy—Semi-automated sleep analysis software and manual rescoring tools for basic sleep research in mice. MethodsX. 2015;2:232–240. doi: 10.1016/j.mex.2015.04.005 26150993

5. Gross BA, Walsh CM, Turakhia AA, Booth V, Mashour GA, Poe GR. Open-source logic-based automated sleep scoring software using electrophysiological recordings in rats. Journal of Neuroscience Methods. 2009;184(1):10–18. doi: 10.1016/j.jneumeth.2009.07.009 19615408

6. Shantilal, Donohue KD, O’Hara BF. SVM for automatic rodent sleep-wake classification. In: IEEE SoutheastCon 2008; 2008. p. 581–586.

7. Crisler S, Morrissey MJ, Anch AM, Barnett DW. Sleep-stage scoring in the rat using a support vector machine. Journal of Neuroscience Methods. 2008;168(2):524–534. doi: 10.1016/j.jneumeth.2007.10.027 18093659

8. Rempe MJ, Clegern WC, Wisor JP. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters. Nature and Science of Sleep. 2015;7:85–99. doi: 10.2147/NSS.S84548 26366107

9. Vilamala A, Madsen KH, Hansen LK. Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring. arXiv e-prints. 2017; arXiv:1710.00633.

10. Miladinović D, Muheim C, Bauer S, Spinnler A, Noain D, Bandarabadi M, et al. SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species. PLOS Computational Biology. 2019;15(4):1–30.

11. Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: a Model for Automatic Sleep Stage Scoring based on Raw Single-Channel EEG. arXiv e-prints. 2017; arXiv:1703.04046.

12. Schwabedal JTC, Sippel D, Brandt MD, Bialonski S. Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning. arXiv e-prints. 2018; arXiv:1809.08443.

13. Quiñonero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND, editors. Dataset Shift in Machine Learning (Neural Information Processing series). The MIT Press; 2008.

14. Katsageorgiou V, Lassi G, Tucci V, Murino V, Sona D. Sleep-stage scoring in mice: The influence of data pre-processing on a system’s performance. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015. p. 598–601.

15. LeCun YA, Bottou L, Orr GB, Müller KR. In: Montavon G, Orr GB, Müller KR, editors. Efficient BackProp. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 9–48.

16. Yaghouby F, O’Hara BF, Sunderam S. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements. International Journal of Neural Systems. 2016;26(04):1650017. doi: 10.1142/S0129065716500179 27121993

17. Bagur S, Lacroix MM, de Lavilléon G, Lefort JM, Geoffroy H, Benchenane K. Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth. PLOS Biology. 2018;16(11):1–32. doi: 10.1371/journal.pbio.2005458

18. Bouchard KE, Mesgarani N, Johnson K, Chang EF. Functional organization of human sensorimotor cortex for speech articulation. Nature. 2013;495(7441):327–332. doi: 10.1038/nature11911 23426266

19. Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: A platform for analyzing neural signals. Journal of Neuroscience Methods. 2010;192(1):146–151. doi: 10.1016/j.jneumeth.2010.06.020 20637804

Článek vyšel v časopise


2019 Číslo 12