Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: A randomized double blinded phase I/IIa trial

Autoři: Janin Chandra aff001;  Wai-Ping Woo aff001;  Julie L. Dutton aff001;  Yan Xu aff001;  Bo Li aff001;  Sally Kinrade aff003;  Julian Druce aff004;  Neil Finlayson aff001;  Paul Griffin aff006;  Kerry J. Laing aff010;  David M. Koelle aff010;  Ian H. Frazer aff001
Působiště autorů: Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd), Translational Research Institute, Woolloongabba, Queensland, Australia aff001;  University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia aff002;  Medicines Development Limited, Southbank, Victoria, Australia aff003;  Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia aff004;  Doherty Institute, Melbourne, Victoria, Australia aff005;  Q-Pharm Pty Ltd, Brisbane, Queensland, Australia aff006;  Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Queensland, Australia aff007;  The University of Queensland, Brisbane, Queensland, Australia aff008;  QIMR Berghofer, Clinical Tropical Medicine Lab, Brisbane, Queensland, Australia aff009;  Department of Medicine, University of Washington, Seattle, Washington, United States of America aff010;  Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America aff011;  Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, Washington, United States of America aff012;  Department of Global Health, University of Washington, Seattle, Washington, United states of America aff013;  Benaroya Research Institute, Seattle, Washington, United States of America aff014
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article



Genital herpes simplex infection affects more than 500 million people worldwide. We have previously shown that COR-1, a therapeutic HSV-2 polynucleotide vaccine candidate, is safe and well tolerated in healthy subjects.


Here, we present a single center double-blind placebo-controlled, randomized phase I/IIa trial of COR-1 in HSV-2 positive subjects in which we assessed safety and tolerability as primary endpoints, and immunogenicity and therapeutic efficacy as exploratory endpoints.


Forty-four HSV-2+ subjects confirmed by positive serology or pathology, and positive qPCR during baseline shedding, with a recurrent genital HSV-2 history of at least 12 months including three to nine reported lesions in 12 months prior to screening, aged 18 to 50 years females and males with given written informed consent, were randomized into two groups. Three immunizations at 4-week intervals and one booster immunization at 6 months, each of 1 mg COR-1 DNA or placebo, were administered intradermally as two injections of 500 μg each to either one forearm or both forearms.


No serious adverse events, life-threatening events or deaths occurred throughout the study. As expected, HSV-2 infected subjects displayed gD2-specific antibody titers prior to immunization. COR-1 was associated with a reduction in viral shedding after booster administration compared with baseline.


This study confirms the previously demonstrated safety of COR-1 in humans and indicates a potential for use of COR-1 as a therapy to reduce viral shedding in HSV-2 infected subjects.

Klíčová slova:

Antibodies – Antigens – Enzyme-linked immunoassays – Immune response – T cells – Vaccines – Viral release


1. Jaishankar D, Shukla D. Genital Herpes: Insights into Sexually Transmitted Infectious Disease. Microb Cell. 2016;3(9):438–50. doi: 10.15698/mic2016.09.528 28357380; PubMed Central PMCID: PMC5354570.

2. Tan DH, Murphy K, Shah P, Walmsley SL. Herpes simplex virus type 2 and HIV disease progression: a systematic review of observational studies. BMC Infect Dis. 2013;13:502. doi: 10.1186/1471-2334-13-502 24164861; PubMed Central PMCID: PMC3819722.

3. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS. 2006;20(1):73–83. doi: 10.1097/01.aids.0000198081.09337.a7 16327322.

4. Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948–52. doi: 10.1016/j.vaccine.2015.12.076 26973067.

5. Corey L, Wald A, Patel R, Sacks SL, Tyring SK, Warren T, et al. Once-daily valacyclovir to reduce the risk of transmission of genital herpes. N Engl J Med. 2004;350(1):11–20. doi: 10.1056/NEJMoa035144 14702423.

6. Kaufmann JK, Flechtner JB. Evolution of rational vaccine designs for genital herpes immunotherapy. Curr Opin Virol. 2016;17:80–6. doi: 10.1016/j.coviro.2016.01.021 26896782.

7. Dutton JL, Li B, Woo WP, Marshak JO, Xu Y, Huang ML, et al. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice. PLoS One. 2013;8(10):e76407. doi: 10.1371/journal.pone.0076407 24098493; PubMed Central PMCID: PMC3789751.

8. Dutton JL, Woo WP, Chandra J, Xu Y, Li B, Finlayson N, et al. An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1. Hum Vaccin Immunother. 2016:0. doi: 10.1080/21645515.2015.1137406 27580249.

9. Chandra J, Dutton JL, Li B, Woo WP, Xu Y, Tolley LK, et al. DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection. J Immunother. 2017;40(2):62–70. doi: 10.1097/CJI.0000000000000156 28166181; PubMed Central PMCID: PMC5293162.

10. Agyemang E, Magaret AS, Selke S, Johnston C, Corey L, Wald A. Herpes Simplex Virus Shedding Rate: Surrogate Outcome for Genital Herpes Recurrence Frequency and Lesion Rates, and Phase 2 Clinical Trials End Point for Evaluating Efficacy of Antivirals. J Infect Dis. 2018;218(11):1691–9. doi: 10.1093/infdis/jiy372 30020484; PubMed Central PMCID: PMC6195656.

11. Johnston C, Koelle DM, Wald A. HSV-2: in pursuit of a vaccine. J Clin Invest. 2011;121(12):4600–9. doi: 10.1172/JCI57148 22133885; PubMed Central PMCID: PMC3223069.

12. Van Wagoner N, Fife K, Leone PA, Bernstein DI, Warren T, Panther L, et al. Effects of Different Doses of GEN-003, a Therapeutic Vaccine for Genital Herpes Simplex Virus-2, on Viral Shedding and Lesions: Results of a Randomized Placebo-Controlled Trial. J Infect Dis. 2018;218(12):1890–9. doi: 10.1093/infdis/jiy415 29982727.

13. Leggatt GR. Peptide Dose and/or Structure in Vaccines as a Determinant of T Cell Responses. Vaccines (Basel). 2014;2(3):537–48. doi: 10.3390/vaccines2030537 26344744; PubMed Central PMCID: PMC4494221.

14. Bernstein DI, Wald A, Warren T, Fife K, Tyring S, Lee P, et al. Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings From a Randomized Trial. J Infect Dis. 2017;215(6):856–64. doi: 10.1093/infdis/jix004 28329211.

15. Flechtner JB, Long D, Larson S, Clemens V, Baccari A, Kien L, et al. Immune responses elicited by the GEN-003 candidate HSV-2 therapeutic vaccine in a randomized controlled dose-ranging phase 1/2a trial. Vaccine. 2016;34(44):5314–20. doi: 10.1016/j.vaccine.2016.09.001 27642130.

16. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 2009;10(5):524–30. doi: 10.1038/ni.1718 19305395.

17. Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature. 2012;491(7424):463–7. doi: 10.1038/nature11522 23075848; PubMed Central PMCID: PMC3499630.

18. Rosales R, Lopez-Contreras M, Rosales C, Magallanes-Molina JR, Gonzalez-Vergara R, Arroyo-Cazarez JM, et al. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther. 2014;25(12):1035–49. doi: 10.1089/hum.2014.024 25275724; PubMed Central PMCID: PMC4270165.

19. Alvarez RD, Huh WK, Bae S, Lamb LS Jr., Conner MG, Boyer J, et al. A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol Oncol. 2016;140(2):245–52. doi: 10.1016/j.ygyno.2015.11.026 26616223; PubMed Central PMCID: PMC4724445.

20. Van Wagoner N KW, Lucksinger G, Warren T, Tyring S, Bernstein D et al. GEN-003 Phase 2 Interim Results: therapeutic Vaccine for Genital Herpes Significantly Reduces Viral Shedding and Genital Lesions. ID Week2015.

21. MP M. Therapeutic DNA vaccine for genital herpes. ASM/ICAAC; Boston, MA2016.

22. Bernard MC, Barban V, Pradezynski F, de Montfort A, Ryall R, Caillet C, et al. Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs. PLoS One. 2015;10(4):e0121518. doi: 10.1371/journal.pone.0121518 25837802; PubMed Central PMCID: PMC4383384.

23. Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines. 2013;12(5):537–54. doi: 10.1586/erv.13.33 23659301; PubMed Central PMCID: PMC4317298.

24. Desai DV, Kulkarni SS. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol. 2015;28(10):546–55. doi: 10.1089/vim.2015.0012 26331265.

25. Schiffer JT, Mayer BT, Fong Y, Swan DA, Wald A. Herpes simplex virus-2 transmission probability estimates based on quantity of viral shedding. J R Soc Interface. 2014;11(95):20140160. doi: 10.1098/rsif.2014.0160 24671939; PubMed Central PMCID: PMC4006256.

26. Freeman EE, White RG, Bakker R, Orroth KK, Weiss HA, Buve A, et al. Population-level effect of potential HSV2 prophylactic vaccines on HIV incidence in sub-Saharan Africa. Vaccine. 2009;27(6):940–6. doi: 10.1016/j.vaccine.2008.11.074 19071187; PubMed Central PMCID: PMC2686080.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden