Factors affecting the spread of multiple information in social networks

Autoři: Zhiqiang Zhu aff001;  Yinghao Zhang aff001
Působiště autorů: College of Science, Huazhong Agricultural University, Wuhan, Hubei, China aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225751


Information spreading in social networks is affected by many factors. Based on a novel information spreading model with five spreading mechanisms, we analyzed and compared the influence of various factors on information spreading. Through a large number of simulation experiments, we found that: (1) K-shell layers have the greatest impact on information spreading; (2) distance between the two information sources, correlation coefficient between two types of information and social reinforcement also affect the information spreading. The analysis results of these factors will be helpful for us to predict the trend of information spreading and find effective strategies to control information spreading.

Klíčová slova:

Community structure – Facebook – Internet – Memory – Network analysis – Simulation and modeling – Social networks – Social research


1. Jin F, Dougherty E, Saraf P, Mi P, Cao Y, Ramakrishnan N. Epidemiological Modeling of News and Rumors on Twitter. Workshop on Social Network Ming and Analysis. 2013 Aug; 1–9.

2. Guille A, Hacid H, Favre C, Zighed DA. Information Diffusion in Online Social Networks: A Survey. Acm Sigmod Record. 2013 Jun; 42(2):17–28. doi: 10.1145/2503792.2503797

3. Peng C, Xu K, Wang F, Wang HY. Predicting Information Diffusion Initiated from Multiple Sources in Online Social Networks. International Symposium on Computational Intelligence and Design. 2013 Oct; 96–99.

4. Dai WH, Hu HZ, Wu TN, Dai YH. Information spread of emergency events: path searching on social networks. The Scientific World Journal. 2014 Jan; 2014:179620. doi: 10.1155/2014/179620 24600323

5. Su Y, Zhang X, Liu LX, Song SY, Fang BX. Understanding information interactions in diffusion: an evolutionary game-theoretic perspective. Frontiers of Computer Science. 2016 Jan; 10(3):518–531. doi: 10.1007/s11704-015-5008-y

6. Zhang ZK, Liu C, Zhan XX, Lu X, Zhang CX, Zhang YC. Dynamics of information diffusion and its applications on complex networks. Phys Rep. 2016 Sep; 651:1–34. doi: 10.1016/j.physrep.2016.07.002

7. Alsuwaidan L, Ykhlef M. Information Diffusion Predictive Model Using Radiation Transfer. IEEE Access. 2017 Oct; 2764001.

8. Liu T, Li P, Chen Y, Zhang J. Community size effects on epidemic spreading in multiplex social networks. PLoS ONE. 2016 Mar; 11(3):e0152021. doi: 10.1371/journal.pone.0152021 27007112

9. Stegehuis C, van der Hofstad R, van Leeuwaarden JSH. Epidemic spreading on complex networks with community structures. Sci Rep. 2016 Apr; 6:29748. doi: 10.1038/srep29748 27440176

10. Dai Z, Li p, Chen Y, Zhang K, Zhang J. Influential node ranking via randomized spanning trees. Physica A. 2019 Jul; 526:120625. doi: 10.1016/j.physa.2019.02.047

11. Vega-Oliveros DA, Zhao L, Berton L. Evaluating link prediction by diffusion processes in dynamic networks. Sci Rep. 2019 Jul; 9:10833. doi: 10.1038/s41598-019-47271-9 31346237

12. Lin YS, Chen W, Lui JCS. Boosting information spread: an algorithmic approach. IEEE Transactions on Computational Social Systems. 2018 Jun; 5(2):344–357. doi: 10.1109/TCSS.2018.2800398

13. Dodds PS, Watts DJ. Universal behavior in a generalized model of ctagion. Phys Rev Lett. 2004 May; 92(21):218701. doi: 10.1103/PhysRevLett.92.218701 15245323

14. Wu F, Huberman BA. Novelty and Collective Attention. Proc Natl Acad Sci. 2007 May; 104(45):17599–17601. doi: 10.1073/pnas.0704916104 17962416

15. Centola D. The spread of behavior in an online social network experiment. Science. 2010 Sep; 329(5996):1194–1197. doi: 10.1126/science.1185231 20813952

16. Lü L, Chen DB, Zhou T. The small world yields the most effective information spreading. New J Phys. 2011 Dec; 13:825–834.

17. Nematzadeh A, Ferrara E, Flammini A, Ahn YY. Optimal Network Modularity for Information Diffusion. Phys Rev Lett. 2014 Aug; 113(8):088701. doi: 10.1103/PhysRevLett.113.088701 25192129

18. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, et al. Identification of influential spreaders in complex networks. Nat Phys. 2011 Aug; 6:888–893. doi: 10.1038/nphys1746

19. Zhu ZQ, Liu CJ, Wu JL, Xu J, Liu B. The Influence of Human Heterogeneity to Information Spreading. J Stat Phys. 2014 Mar; 154(6):1569–1577. doi: 10.1007/s10955-014-0924-z

20. Beutel A, Prakash BA, Rosenfeld R, Faloutsos C. Interacting Viruses in Networks: Can Both Survive?. Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. 2012 Aug; 29:426–434.

21. Guimerà R, Danon L, Guilera D, Giralt F, Arenas A. Self-similar community structure in a network of human interactions. Phys Rev E. 2003 Dec; 68:065103. doi: 10.1103/PhysRevE.68.065103

22. Zhu ZQ. A novel method of generating tunable network topologies for social simulation. J Stat Mech-Theory E. 2018 Jul; 7:073410. doi: 10.1088/1742-5468/aace2f

23. Viswanath B, Mislove A, Cha M, Gummadi KP. On the evolution of user interactions in facebook. Proceedings of the Acm Workshop on Online Social Networks. 2009 Aug; 39:37–42.

24. Blondel VD, Guillaume J, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech-Theory E. 2008 Oct; 2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008

25. Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E. A model of Internet topology using K-shell decomposition. Proc Natl Acad Sci. 2007 Jul; 104(27):11150–11154. doi: 10.1073/pnas.0701175104 17586683

Článek vyšel v časopise


2019 Číslo 12