MicroRNA profiling in canine multicentric lymphoma


Autoři: Karlee K. L. Craig aff001;  Geoffrey A. Wood aff001;  Stefan M. Keller aff001;  Anthony J. Mutsaers aff002;  R. Darren Wood aff001
Působiště autorů: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada aff001;  Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226357

Souhrn

Lymphoma is the most common hematopoietic tumour in dogs and is remarkably similar to the human disease. Tumour biomarker discovery is providing new tools for diagnostics and predicting therapeutic response and clinical outcome. MicroRNAs are small non-coding RNAs that participate in post-transcriptional gene regulation and their aberrant expression can impact genes involved in cancer. The aim of this study was to characterize microRNA expression in lymph nodes and plasma from dogs with multicentric B or T cell lymphoma compared to healthy control dogs. We further compared expression between lymph nodes and corresponding plasma samples and assessed changes in expression at relapse compared to time of diagnosis. Lastly, we investigated microRNAs for association with clinical outcome in patients treated with CHOP chemotherapy. A customized PCR array was utilized to profile 38 canine target microRNAs. Quantification was performed using real time RT-qPCR and relative expression was determined by the delta-delta Ct method. In lymph nodes, there were 16 microRNAs with significantly altered expression for B cell lymphoma and 9 for T cell lymphoma. In plasma, there were 15 microRNAs altered for B cell lymphoma and 3 for T cell lymphoma. The majority of microRNAs did not have correlated expression between lymph node and plasma and only 8 microRNAs were significantly different between diagnosis and relapse. For B cell lymphoma, 8 microRNAs had differential expression in the non-remission group compared to dogs that completed CHOP in complete remission. Four of these microRNAs were also altered in patients that died prior to one-year. Kaplan-Meier survival curves for high versus low microRNA expression revealed that 10 microRNAs were correlated with progression-free survival and 3 with overall survival. This study highlights microRNAs of interest for canine multicentric lymphoma. Future goals include development of microRNA panels that may be useful as biomarkers with the intent to provide improved outcome prediction to veterinary cancer patients.

Klíčová slova:

B cells – Cancer detection and diagnosis – Dogs – Lymph nodes – Lymphomas – MicroRNAs – T cells – Veterinary diagnostics


Zdroje

1. Vail DM, Pinkerton ME, Young KM. Hematopoietic tumors: canine lymphoma and lymphoid leukemia. In: Withrow SJ, Vail DM, Page RL, editors. Withrow & MacEwen’s Small Animal Clinical Oncology. 5th ed, St. Louis, Missouri: Elsevier; 2013. p. 608–638.

2. Vezzali E, Parodi AL, Marcato PS, Bettini G. Histopathologic classification of 171 cases of canine and feline non-Hodgkin lymphoma according to the WHO. Vet Comp Oncol. 2010;8(1):38–49. doi: 10.1111/j.1476-5829.2009.00201.x 20230580

3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi: 10.1016/s0092-8674(04)00045-5 14744438

4. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–333. doi: 10.1038/nrc3932 25998712

5. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–477. doi: 10.1038/nrclinonc.2011.76 21647195

6. Montes-Moreno S, Martinez N, Sanchez-Espiridión B, Uriarte RD, Rodriguez ME, Saez A, et al. miRNA expression in diffuse large B-cell lymphoma treated with chemoimmunotherapy. Blood 2011.118(4):1034–1040. doi: 10.1182/blood-2010-11-321554 21633089

7. Uhl E, Krimer P, Schliekelman P, Tompkins SM, Suter S. Identification of altered microRNA expression in canine lymphoid cell lines and cases of B- and T-Cell lymphomas. Genes Chromosom Cancer. 2011;50(11):950–967. doi: 10.1002/gcc.20917 21910161

8. Mortarino M, Gioia G, Gelain ME, Albonico F, Roccabianca P, Ferri E, et al. Identification of suitable endogenous controls and differentially expressed microRNAs in canine fresh-frozen and FFPE lymphoma samples. Leuk Res. 2010;34(8):1070–1077. doi: 10.1016/j.leukres.2009.10.023 19945163

9. Albonico F, Mortarino M, Avallone G, Gioia G, Comazzi S, Roccabianca P. The expression ratio of miR-17-5p and miR-155 correlates with grading in canine splenic lymphoma. Vet Immunol Immunopathol. 2013;155(1–2):117–123. doi: 10.1016/j.vetimm.2013.06.018 23871213

10. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi: 10.1016/j.ydbio.2006.08.028 16989803

11. Jardin F, Figeac M. 2013. MicroRNAs in lymphoma, from diagnosis to targeted therapy. Curr Opin Oncol. 2013;25(5):480–486. doi: 10.1097/CCO.0b013e328363def2 23852382

12. Garrett LD, Thamm DH, Chun R, Dudley R, Vail DM. Evaluation of a 6-month chemotherapy protocol with no maintenance therapy for dogs with lymphoma. J Vet Intern Med. 2002;16(6):704–709. doi: 10.1892/0891-6640(2002)016<0704:eoacpw>2.3.co;2 12465768

13. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR-data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 15289330

14. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45 11328886

15. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2008;126(5);1763–1768.

16. Wagner S, Willenbrock S, Nolte I, Escobar HM. Comparison of non-coding RNAs in human and canine cancer. Front Genet. 2013;4(46):1–9.

17. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64. doi: 10.1186/gb-2009-10-6-r64 19531210

18. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002 19167326

19. Lawrie CH. MicroRNAs and lymphomagenesis: a functional review. Br J Haematol. 2013;160(5):571–581. doi: 10.1111/bjh.12157 23205669

20. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64(9):3087–3095. doi: 10.1158/0008-5472.can-03-3773 15126345

21. Xiao C, Srinivasan L, Calado DP, Patternson HC, Zhang B, Wang J, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9(4):405–414. doi: 10.1038/ni1575 18327259

22. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for Normal Immune Function. Science. 2007;316(5824):608–611. doi: 10.1126/science.1139253 17463290

23. Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, et al. Identification of novel mircroRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 2011;70(8):1496–1506. doi: 10.1136/ard.2010.139857 21602271

24. Yamanaka Y, Tagawa H, Takahashi N, Watanabe A, Guo YM, Iwamoto K, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114(15):3265–3275. doi: 10.1182/blood-2009-06-222794 19641183

25. Bousquet M, Harris MH, Zhou B, Lodish HF. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci U S A. 2010;107(50):21558–21563. doi: 10.1073/pnas.1016611107 21118985

26. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A. 2010;107(50):21505–21510. doi: 10.1073/pnas.1016218107 21118986

27. Malumbres R, Sarosiek KA, Cubedo E, Ruiz JW, Jiang X, Gascoyne RD, et al. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood. 2009;113(16):3754–3764. doi: 10.1182/blood-2008-10-184077 19047678

28. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ, et al. Distinct microRNA signatures in human lymphocytes subsets and enforcement of the naïve state in CD4+ T cells by the microRNA miR-125b. Nat Immunol. 2011;12(8):796–803. doi: 10.1038/ni.2057 21706005

29. Bagchi A, Mills AA. The quest for the 1p36 tumor suppressor. Cancer Res. 2008;68(8):2551–2556. doi: 10.1158/0008-5472.CAN-07-2095 18413720

30. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis. 2010;31(4):745–750. doi: 10.1093/carcin/bgq033 20118199

31. Rao DS, O’Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL, Baltimore D. MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity. 2010;33(1):48–59. doi: 10.1016/j.immuni.2010.06.013 20598588

32. Asmar F, Hother C, Kulosman G, Treppendahl MB, Nielsen HM, Ralfkiaer U, et al. Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A methylation: another “double hit” lymphoma with very poor outcome? Oncotarget. 2014;5(7):1912–1925. doi: 10.18632/oncotarget.1877 24722400

33. Pflaum J, Schlosser S, Müller M. p53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285. doi: 10.3389/fonc.2014.00285 25374842

34. Ni H, Tong R, Zou L, Song G, Cho WC. MicroRNAs in diffuse large B-cell lymphoma. Oncol Lett. 2016;11(2):1271–1280. doi: 10.3892/ol.2015.4064 26893730

35. Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphoma. Br J Haematol. 2008;142(5):732–744. doi: 10.1111/j.1365-2141.2008.07237.x 18537969

36. Dooley J, Linterman MA, Liston A. MicroRNA regulation of T-cell development. Immunol Rev. 2013;253(1):53–64. doi: 10.1111/imr.12049 23550638

37. Edwards DS, Henley WE, Harding EF, Dobson JM, Wood JL. Breed incidence of lymphoma in a UK population of insured dogs. Vet Comp Oncol. 2003;1(4):200–206. doi: 10.1111/j.1476-5810.2003.00025.x 19379181

38. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC. MicroRNAs miR-125a and miR-125b constitutively activate the NF- B pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A. 2012;109(20):7865–7870. doi: 10.1073/pnas.1200081109 22550173

39. Yuan WX, Gui YX, Na WN, Chao J, Yang X. Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients. Oncol Lett. 2016;11(1):423–432. doi: 10.3892/ol.2015.3866 26870228

40. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of mircoRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9(6):435–443. doi: 10.1016/j.ccr.2006.04.020 16766263

41. Alencar AJ, Malumbres R, Kozloski GA, Advani R, Talreja N, Chinichian S, et al. MicroRNAs are independent predictors of outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Clin Cancer Res. 2011;17(12):4125–4135. doi: 10.1158/1078-0432.CCR-11-0224 21525173

42. Musilova K, Devan J, Cerna K, Seda V, Pavlasova G, Sharma S, et al. miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood. 2018;132(22):2389–2400. doi: 10.1182/blood-2018-06-855502 30213873

43. Yan B, Guo Q, Fu F, Wang Z, Yin Z, Wei YB, et al. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther. 2015;8:539–548. doi: 10.2147/OTT.S75899 25767398

44. Zhong H, Xu J, Zhong JH, Xiao F, Liu Q, Huang HH, et al. Clinical and prognostic significance of miR-155 and miR-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients with diffuse large B-cell lymphoma. Exp Ther Med. 2012;3(5):763–770. doi: 10.3892/etm.2012.502 22969965

45. Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed Rep. 2016;5(4):395–402. doi: 10.3892/br.2016.747 27699004

46. Bai H, Wei J, Deng C, Yang X, Wang C, Xu R. MicroRNA-21 regulates the sensitivity of diffuse large B-cell lymphoma cells to the CHOP chemotherapy regimen. Int J Hematol. 2013;97(2): 223–231. doi: 10.1007/s12185-012-1256-x 23275230

47. Valli VE, San Myint M, Barthel A, Bienzle D, Caswell J, Colbatzky F, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol. 2011;48(1):198–211. doi: 10.1177/0300985810379428 20861499

48. Valli VE, Kass PH, San Myint MS, Scott F. Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Vet Pathol. 2013;50(5):738–748. doi: 10.1177/0300985813478210 23444036

49. Blondal T, Jensby NS, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–6. doi: 10.1016/j.ymeth.2012.09.015 23036329

50. Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, Bönig H, et al. Differentieal stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One. 2013;8(9):e75184. doi: 10.1371/journal.pone.0075184 24073250

51. Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56(6):998–1006. doi: 10.1373/clinchem.2009.141580 20378769

52. Buza T, Arick M 2nd, Wang H, Peterson DG. Computational prediction of disease microRNAs in domestic animals. BMC Res Notes. 2014;7:403. doi: 10.1186/1756-0500-7-403 24970281


Článek vyšel v časopise

PLOS One


2019 Číslo 12