Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development

Autoři: Hongwu Shi aff001;  Meng Yang aff001;  Changming Mo aff002;  Wenjuan Xie aff003;  Chang Liu aff001;  Bin Wu aff001;  Xiaojun Ma aff001
Působiště autorů: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China aff001;  Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China aff002;  Guilin Medical University, Guilin, China aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226865


Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.

Klíčová slova:

Comparative genomics – Fruits – Chloroplast genome – Medicinal plants – Phylogenetic analysis – Phylogenetics – Ribosomal RNA – Sequence alignment


1. Jeffrey C (1980) A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81: 233–247. doi: 10.1111/j.1095-8339.1980.tb01676.x

2. Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, et al. (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 12: 343. doi: 10.1186/1471-2164-12-343 21729270

3. Philippe RN, De MM, Anderson J, Ajikumar PK (2014) Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol 26: 155–161. doi: 10.1016/j.copbio.2014.01.004 24503452

4. Chun LI, Lin LM, Feng S, Wang ZM, Huo HR, Li D, et al. (2014) Chemistry and pharmacology of Siraitia grosvenorii: A review. Chinese Journal of Natural Medicines 12: 89–102. doi: 10.1016/S1875-5364(14)60015-7 24636058

5. Deng F, Liang X, Yang L, Liu Q, Liu H (2013) Analysis of Mogroside V in Siraitia grosvenorii with micelle-mediated cloud-Point extraction. Phytochemical Analysis 24: 381–385. doi: 10.1002/pca.2420 23349010

6. Itkin M, Davidovich-Rikanati R, Cohen S, Portnoy V, Doron-Faigenboim A, Oren E, et al. (2016) The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proceedings of the National Academy of Sciences of the United States of America 113: E7619–E7628. doi: 10.1073/pnas.1604828113 27821754

7. Zhong S, Lin W, Tang B (1993) Characteristics and cultivation of Siraitia siamensis. Guangxi Argricultural Sciences 5: 218–218.

8. Kasai R, Nie RL, Nashi K, Ohtani K, Zhou J, Tao GD, et al. (1989) Sweet cucurbitane glycosides from fruits of Siraitia siamensis (chi-zi luo-han-guo), a Chinese folk medicine. Agricultural and Biological Chemistry 53: 3347–3349. doi: 10.1271/bbb1961.53.3347

9. Koc S, Isgor BS, Isgor YG, Shomali MN, Yildirim O (2015) The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharmaceutical Biology 53: 746–751. doi: 10.3109/13880209.2014.942788 25339240

10. Misra RS, Sriram S, Govil JN, Pandey J, Shivakumar BG, Singh VK (2002) Medicinal value and export potential of tropical tuber crops. Crop Improvement Production Technology Trade and Commerce: 376–386.

11. Zheng Y, Zhang WJ, Wang XM (2013) Triptolide with potential medicinal value for diseases of the central nervous system. Cns Neuroscience and Therapeutics 19: 76–82. doi: 10.1111/cns.12039 23253124

12. Rivière-Dobigny T, Doan LP, Quang NL, Maillard JC, Michaux J (2010) Species identification, molecular sexing and genotyping using non-invasive approaches in two wild Bovids species: Bos gaurus and Bos javanicus. Zoo Biology 28: 127–136.

13. Caroline T, Segatto ALA, Júlia B, Bonatto SL, Freitas LB (2015) Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species. AoB Plants 7: plv084. doi: 10.1093/aobpla/plv084 26187606

14. Pharmacopoeia of the People's of Republic China 2015 Edition. In: Commission CP, editor. Beijing: China Medical Science Press.

15. Lu AM, Zhang ZY (1984) The genus Siraitia Merr. in China. Guihaia 4: 27–33.

16. Ma XJ, Mo CM, Bai LH, Feng SX (2008) A New Siraitia grosvenorii Cultivar 'Yongqing 1'. Acta Horticulturae Sinica 35: 1855–1855. doi: 10.16420/j.issn.0513-353x.2008.12.028

17. Trobajo R, Mann DG, Clavero E, Evans KM, Vanormelingen P, Mcgregor RC (2010) The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae). European Journal of Phycology 45: 413–425. doi: 10.1080/09670262.2010.498586

18. Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. Journal of Clinical Microbiology 37: 1846–1851. 10325335

19. Liu C, Liang D, Gao T, Pang X, Song J, Yao H, et al. (2011) PTIGS-IdIt, a system for species identification by DNA sequences of the psbA-trnH intergenic spacer region. BMC Bioinformatics 12: S4. doi: 10.1186/1471-2105-12-S13-S4 22373238

20. Park J (2001) The Cell: A molecular approach, second edition. Yale Journal of Biology and Medicine 74: 361–365. doi: 10.1016/0014-5793(78)81037-0

21. Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. Genomics of Chloroplasts and Mitochondria 35: 103–126. doi: 10.1007/978-94-007-2920-9_5

22. Etienne D, Sota F, Catherine FS, Mark B, Ian S (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Molecular Biology and Evolution 28: 2077–2086. doi: 10.1093/molbev/msr028 21289370

23. Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology 7: 84. doi: 10.1186/1741-7007-7-84 19954512

24. Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, et al. (2015) Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. Plos One 10: e0117159. doi: 10.1371/journal.pone.0117159 26061692

25. Park I, Yang S, Kim WJ, Noh P, Lee HO, Moon BC (2018) The complete chloroplast genomes of Six Ipomoea species and indel marker development for the discrimination of authentic Pharbitidis Semen (seeds of I. nil or I. purpurea). Frontiers in Plant Science 9: 965. doi: 10.3389/fpls.2018.00965 30026751

26. Park I, Yang S, Choi G, Kim WJ, Moon BC (2017) The complete chloroplast genome sequences of Aconitum pseudolaeve and Aconitum longecassidatum, and development of molecular markers for distinguishing species in the Aconitum subgenus Lycoctonum. Molecules 22: 2012. doi: 10.3390/molecules22112012 29160852

27. Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. doi: 10.1093/bioinformatics/btu170 24695404

28. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 421. doi: 10.1186/1471-2105-10-421 20003500

29. Anton B, Sergey N, Dmitry A, Gurevich AA, Mikhail D, Kulikov AS, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455–477. doi: 10.1089/cmb.2012.0021 22506599

30. Krumsiek J, Rattei AT (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23: 1026–1028. doi: 10.1093/bioinformatics/btm039 17309896

31. Swindell SR, Plasterer TN (1997) SEQMAN. Contig assembly. Methods in Molecular Biology 70: 75–89. doi: 10.1385/0-89603-358-9:75 9089604

32. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 2016: gkw955. doi: 10.1093/nar/gkw955 28204566

33. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255. doi: 10.1093/bioinformatics/bth352 15180927

34. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, et al. (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13: 715. doi: 10.1186/1471-2164-13-715 23256920

35. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964. doi: 10.1093/nar/25.5.955 9023104

36. Liying C, Narayanan V, Alexander R, Kerr W, Jansen RK, Jim LM, et al. (2006) ChloroplastDB: the Chloroplast Genome Database. Nucleic Acids Research 34: D692–D696. doi: 10.1093/nar/gkj055 16381961

37. Ed L, Nomi HM, Gibson, Raymond C, Suzanna L (2009) Apollo: a community resource for genome annotation editing. Bioinformatics 25: 1836–1837. doi: 10.1093/bioinformatics/btp314 19439563

38. Dean L, Bjorn C (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research 32: 11–16. doi: 10.1093/nar/gkh152 14704338

39. Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research 15: 1281–1295. doi: 10.1093/nar/15.3.1281 3547335

40. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16: 276–277. doi: 10.1016/s0168-9525(00)02024-2 10827456

41. Itaya H (2013) GEMBASSY: an EMBOSS associated software package for comprehensive genome analyses. Source Code for Biology and Medicine 8: 17. doi: 10.1186/1751-0473-8-17 23987304

42. Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15: 426–427. doi: 10.1093/bioinformatics/15.5.426 10366664

43. Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33: 2583–2585. doi: 10.1093/bioinformatics/btx198 28398459

44. Dubchak I, Ryaboy DV (2005) VISTA family of computational tools for comparative analysis of DNA sequences and whole genomes. Methods in Molecular Biology 338: 69–89. doi: 10.1385/1-59745-097-9:69

45. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, et al. (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046–1047. doi: 10.1093/bioinformatics/16.11.1046 11159318

46. Librado P, Rozas J (2009) Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 19346325

47. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols Bioinformatics Chapter 2: Unit 2.3. doi: 10.1002/0471250953.bi0203s00 18792934

48. Gao F, Chen C, Arab DA, Du Z, He Y, Ho SYW (2019) EasyCodeML: A visual tool for analysis of selection using CodeML. Ecology and Evolution: 1–8. doi: 10.1038/s41559-018-0779-9

49. Kazutaka K, Kei-Ichi K, Hiroyuki T, Takashi M (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518. doi: 10.1093/nar/gki198 15661851

50. Tippmann HF (2004) Analysis for free: Comparing programs for sequence analysis. Brief Bioinform 5: 82–87. doi: 10.1093/bib/5.1.82 15153308

51. Posada D (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818. doi: 10.1093/bioinformatics/14.9.817 9918953

52. Swofford DL (2002) PauP*. Phylogenetic Analysis Using Parsimony (* and other methods). Version 4.0b10 ed. MA, USA.

53. Lalitha S (2000) Primer Premier 5. Biotech software and internet report 1: 270–272. doi: 10.1089/152791600459894

54. Zhang X, Zhou T, Kanwal N, Zhao Y, Bai G, Zhao G (2017) Completion of eight Gynostemma BL. (Cucurbitaceae) chloroplast genomes: characterization, comparative analysis, and phylogenetic relationships. Frontiers in Plant Science 8: 1583. doi: 10.3389/fpls.2017.01583 28955369

55. Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, et al. (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. Plos One 8: e57607. doi: 10.1371/journal.pone.0057607 23460883

56. Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, et al. (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22: 1330. doi: 10.3390/molecules22081330 28800082

57. Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91: 6795–6801. doi: 10.1073/pnas.91.15.6795 8041699

58. Jiang M, Chen H, He S, Wang L, Chen AJ, Liu C (2018) Sequencing, characterization, and comparative analyses of the plastome of Caragana rosea var. rosea. International Journal of Molecular Science 19: 1419. doi: 10.3390/ijms19051419 29747436

59. Zhou J, Chen X, Cui Y, Sun W, Li Y, Wang Y, et al. (2017) Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. International Journal of Molecular Science 18: 1839. doi: 10.3390/ijms18091839 28837061

60. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Molecular Biology and Evolution 13: 660–665. doi: 10.1093/oxfordjournals.molbev.a025626 8676740

61. Necsulea A, Lobry J (2007) A new method for assessing the effect of replication on DNA base composition asymmetry. Molecular Biology and Evolution 24: 2169–2179. doi: 10.1093/molbev/msm148 17646257

62. Tillier ER, Collins RA (2000) The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. Journal of Molecular Evolution 50: 249–257. doi: 10.1007/s002399910029 10754068

63. Clarke AK, Gustafsson P, Lidholm JÅ (1994) Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta. Plant Molecular Biology 26: 851–862. doi: 10.1007/bf00028853 7999999

64. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (2014) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. Embo Journal 16: 6095–6104. doi: 10.1093/emboj/16.20.6095 9321389

65. Rose AB (2008) Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol 326: 277–290. doi: 10.1007/978-3-540-76776-3_15 18630758

66. Sugita M, Sugiura M (1996) Regulation of gene expression in chloroplasts of higher plants. Plant Molecular Biology 32: 315–326. doi: 10.1007/bf00039388 8980485

67. Boudreau E, Turmel M (1995) Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Plant Molecular Biology 27: 351–364. doi: 10.1007/bf00020189 7888624

68. Nazareno AG, Carlsen M, Lohmann LG (2015) Complete chloroplast genome of Tanaecium tetragonolobum: The first Bignoniaceae plastome. Plos One 10: e0129930. doi: 10.1371/journal.pone.0129930 26103589

69. Comeron JM, Aguadé M (1998) An evaluation of measures of synonymous codon usage bias. Journal of Molecular Evolution 47: 268–274. doi: 10.1007/pl00006384 9732453

70. Lee S, Weon S, Lee S, Kang C (2010) Relative codon adaptation index, a sensitive measure of codon usage bias. Evolutionary Bioinformatics 2010: 47–55. doi: 10.4137/EBO.S4608 20535230

71. Zhou J, Cui Y, Chen X, Li Y, Xu Z, Duan B, et al. (2018) Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: molecular structures, comparative analysis, and phylogenetic analysis. Molecules 23: 437. doi: 10.3390/molecules23020437 29462921

72. Guo S, Guo L, Zhao W, Xu J, Li Y, Zhang X, et al. (2018) Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules 23: 246. doi: 10.3390/molecules23020246 29373520

73. Liu W, Kong H, Zhou J, Fritsch PW, Hao G, Gong W (2018) Complete chloroplast genome of Cercis chuniana (Fabaceae) with structural and genetic comparison to six species in Caesalpinioideae. International Journal of Molecular Science 19: 1286. doi: 10.3390/ijms19051286 29693617

74. Dong W, Xu C, Cheng T, Lin K, Zhou S (2013) Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biology & Evolution 5: 989–997. doi: 10.1093/gbe/evt063 23595020

75. Xie DF, Yu Y, Deng YQ, Li J, Liu HY, Zhou SD, et al. (2018) Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. International Journal of Molecular Science 19: 1847. doi: 10.3390/ijms19071847 29932433

76. Guy-Franck R, Alix K, Bernard D (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and molecular biology reviews 72: 686–727. doi: 10.1128/MMBR.00011-08 19052325

77. Gulcher J (2012) Microsatellite markers for linkage and association studies. Cold Spring Harbor Protocols 2012: 425–432. doi: 10.1101/pdb.top068510 22474656

78. Kawabe A, Nukii H, Furihata H (2018) Exploring the history of chloroplast capture in Arabis using whole chloroplast genome sequencing. International Journal of Molecular Science 19: 602. doi: 10.3390/ijms19020602 29463014

79. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, et al. (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theoretical and Applied Genetics 95: 163–173. doi: 10.1007/s001220050544

80. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc 90: 157–166. doi: 10.1111/brv.12104 24666563

81. Lu Q, Ye W, Lu R (2018) Phylogenomic and comparative analyses of complete plastomes of Croomia and Stemona (Stemonaceae). International Journal of Molecular Science 19: 2383. doi: 10.3390/ijms19082383 30104517

82. Khan A, Khan IA, Asif H, Azim MK (2010) Current trends in chloroplast genome research. African Journal of Biotechnology 9: 3494–3500. doi: 10.1186/1471-2105-11-321

83. Zhang X, Zhou T, Yang J, Sun JJ, Ju MM, Zhao YM, et al. (2018) Comparative analyses of chloroplast genomes of Cucurbitaceae species: lights into selective pressures and phylogenetic relationships. Molecules 23: 2165. doi: 10.3390/molecules23092165 30154353

84. Group CPW (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 12794–12797. doi: 10.1073/pnas.0905845106 19666622

85. Lei W, Ni D, Wang Y, Shao J, Wang X, Yang D, et al. (2016) Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. Scientific Reports 6: 21669. doi: 10.1038/srep21669 26899134

86. Jansen RK, Raubeson LA, Boore JL, Depamphilis CW, Chumley TW, Haberle RC, et al. (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology 395: 348–384. doi: 10.1016/S0076-6879(05)95020-9 15865976

87. Li Y, Zhou J, Chen X, Cui Y, Xu Z, Li Y, et al. (2017) Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species. Scientific Reports 7: 12834. doi: 10.1038/s41598-017-13401-4 29026168

88. Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. Journal of Molecular Evolution 40: 56–63. doi: 10.1007/bf00166595 7714912

89. Chen Z, Schertz KF, Mullet JE, Dubell A, Hart GE (1995) Characterization and expression of rpoC2 in CMS and fertile lines of sorghum. Plant Molecular Biology 28: 799–809. doi: 10.1007/bf00042066 7640353

90. Hiroshi K, Pal M (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425: 86–89. doi: 10.1038/nature01909 12955146

91. Maliga P (2004) Plastid transformation in higher plants. Annual Review of Plant Biology 55: 289–313. doi: 10.1146/annurev.arplant.55.031903.141633 15377222

92. Tseng CC, Sung TY, Li YC, Hsu SJ, Lin CL, Hsieh MH (2010) Editing of accD and ndhF chloroplast transcripts is partially affected in the Arabidopsis vanilla cream1 mutant. Plant Molecular Biology 73: 309–323. doi: 10.1007/s11103-010-9616-5 20143129

93. Madoka Y, Tomizawa KI, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant and Cell Physiology 43: 1518–1525. doi: 10.1093/pcp/pcf172 12514249

94. Li J (1993) A revision of the genus Siraitia Merr. and two new genera of Cucurbitaceae. Acta Phytotax Sinica 31: 45–55.

Článek vyšel v časopise


2019 Číslo 12