A new, fast method to search for morphological convergence with shape data

Autoři: Silvia Castiglione aff001;  Carmela Serio aff001;  Davide Tamagnini aff002;  Marina Melchionna aff001;  Alessandro Mondanaro aff001;  Mirko Di Febbraro aff004;  Antonio Profico aff002;  Paolo Piras aff005;  Filippo Barattolo aff001;  Pasquale Raia aff001
Působiště autorů: Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, University of Naples Federico II, Napoli, Italy aff001;  Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy aff002;  Dipartimento di Scienze della Terra, University of Florence, Firenze, Italy aff003;  Dipartimento di Bioscienze e Territorio, University of Molise, Pesche, Isernia, Italy aff004;  Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, Rome, Italy aff005;  Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, Sapienza Università di Roma, Rome, Italy aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226949


Morphological convergence is an intensely studied macroevolutionary phenomenon. It refers to the morphological resemblance between phylogenetically distant taxa. Currently available methods to explore evolutionary convergence either: rely on the analysis of the phenotypic resemblance between sister clades as compared to their ancestor, fit different evolutionary regimes to different parts of the tree to see whether the same regime explains phenotypic evolution in phylogenetically distant clades, or assess deviations from the congruence between phylogenetic and phenotypic distances. We introduce a new test for morphological convergence working directly with non-ultrametric (i.e. paleontological) as well as ultrametric phylogenies and multivariate data. The method (developed as the function search.conv within the R package RRphylo) tests whether unrelated clades are morphologically more similar to each other than expected by their phylogenetic distance. It additionally permits using known phenotypes as the most recent common ancestors of clades, taking full advantage of fossil information. We assessed the power of search.conv and the incidence of false positives by means of simulations, and then applied it to three well-known and long-discussed cases of (purported) morphological convergence: the evolution of grazing adaptation in the mandible of ungulates with high-crowned molars, the evolution of mandibular shape in sabertooth cats, and the evolution of discrete ecomorphs among anoles of Caribbean islands. The search.conv method was found to be powerful, correctly identifying simulated cases of convergent morphological evolution in 95% of the cases. Type I error rate is as low as 4–6%. We found search.conv is some three orders of magnitude faster than a competing method for testing convergence.

Klíčová slova:

Animal phylogenetics – Cats – Convergent evolution – Grazing – Paleogenetics – Phylogenetic analysis – Phylogenetics – Research errors


1. Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution. 2012;66: 2369–2383. doi: 10.1111/j.1558-5646.2012.01619.x 22834738

2. Butler MA, King AA. Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. Am Nat. 2004;164: 683–695. doi: 10.1086/426002 29641928

3. Wake DB, Wake MH, Specht CD. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science. 2011;331: 1032–1035. doi: 10.1126/science.1188545 21350170

4. Bravo GA, Remsen JV Jr., Brumfield RT. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae). Evolution. 2014;68: 2757–2774. doi: 10.1111/evo.12506 25135629

5. Huang S, Roy K, Valentine JW, Jablonski D. Convergence, divergence, and parallelism in marine biodiversity trends: Integrating present-day and fossil data. Proc Natl Acad Sci. 2015;112: 4903–4908. doi: 10.1073/pnas.1412219112 25901312

6. Speed MP, Arbuckle K. Quantification provides a conceptual basis for convergent evolution. Biol Rev. 2016;92: 815–829. doi: 10.1111/brv.12257 26932796

7. Goswami A, Milne N, Wroe S. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proc R Soc B Biol Sci. 2011;278: 1831–1839. doi: 10.1098/rspb.2010.2031 21106595

8. Ingram T, Kai Y. The Geography of Morphological Convergence in the Radiations of Pacific Sebastes Rockfishes. Am Nat. 2014;184: E115–E131. doi: 10.1086/678053 25325753

9. Serb JM, Sherratt E, Alejandrino A, Adams DC. Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae). J Evol Biol. 2017;63: 685–1747. doi: 10.1111/jeb.13137 28667696

10. Moen DS, Morlon H, Wiens JJ. Testing Convergence Versus History: Convergence Dominates Phenotypic Evolution for over 150 Million Years in Frogs. Syst Biol. 2015;65: 146–160. doi: 10.1093/sysbio/syv073 26454873

11. Piras P, Sansalone G, Teresi L, Kotsakis T, Colangelo P, Loy A. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis. J Morphol. 2012;273: 696–711. doi: 10.1002/jmor.20015 22419178

12. Van Valkenburgh B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol. 2007;47: 147–163. doi: 10.1093/icb/icm016 21672827

13. Slater GJ. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution. Proc Natl Acad Sci. 2015;112: 4897–4902. doi: 10.1073/pnas.1403666111 25901311

14. Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, et al. Biology of the sauropod dinosaurs: the evolution of gigantism. Biol Rev. 2010;86: 117–155. doi: 10.1111/j.1469-185X.2010.00137.x 21251189

15. Figueirido B, Tseng ZJ, Martín-Serra A. Skull shape evolution in durophagous carnivorans. Evolution. 2013;67: 1975–1993. doi: 10.1111/evo.12059 23815654

16. Raia P, Carotenuto F, Eronen JT, Fortelius M. Longer in the tooth, shorter in the record? The evolutionary correlates of hypsodonty in Neogene ruminants. Proc R Soc B Biol Sci. 2011;278: 3474–3481. doi: 10.1098/rspb.2011.0273 21471111

17. Janis C. An Evolutionary History of Browsing and Grazing Ungulates. In: Gordon IJ, Prins HHT, editors. The Ecology of Browsing and Grazing. Berlin, Heidelberg: Springer; 2008. pp. 21–45.

18. Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB. Convergence and the multidimensional niche. Evolution. 2005;59: 409–421. doi: 10.1111/j.0014-3820.2005.tb00999.x 15807425

19. Losos JB. The Evolution of Convergent Structure in Caribbean Anolis Communities. Syst. Biol. 1992; 41:403–420.

20. Christiansen P. Evolutionary convergence of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus ogygia compared. J Mammal Evol. 2008;15: 155–179. doi: 10.1007/s10914-007-9069-z

21. McGhee GR. Convergent Evolution: Limited Forms Most Beautiful. MIT Press; 2011.

22. Stayton CT. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution. 2015;69: 2140–2153. doi: 10.1111/evo.12729 26177938

23. Stayton CT. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution. 2006;60: 824–841. doi: 10.1111/j.0014-3820.2006.tb01160.x 16739463

24. Ingram T, Mahler DL. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Hansen T, editor. Met Ecol Evol. 2013;4: 416–425. doi: 10.1111/2041-210X.12034

25. Muschick M, Indermaur A, Salzburger W. Convergent Evolution within an Adaptive Radiation of Cichlid Fishes. Curr Biol. 2012;22: 2362–2368. doi: 10.1016/j.cub.2012.10.048 23159601

26. Adams DC, Collyer ML. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution. 2009;63: 1143–1154. doi: 10.1111/j.1558-5646.2009.00649.x 19210539

27. Adams DC, Collyer ML. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations. Syst Biol. 2017;67: 14–31. doi: 10.1093/sysbio/syx055 28633306

28. Castiglione S, Tesone G, Piccolo M, Melchionna M, Mondanaro A, Serio C, et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Met Ecol Evol. 2018;62: 181–10. doi: 10.1111/2041-210X.12954

29. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. New York, NY: Springer Science & Business Media; 2013.

30. Zelditch ML, Swiderski DL, Sheets HD. Geometric Morphometrics for Biologists. Academic Press; 2012.

31. Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution. 2nd edition. 2007;61: 2898–2912. doi: 10.1111/j.1558-5646.2007.00225.x 17894806

32. Slater GJ, Harmon LJ, Alfaro ME. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution. 2012;66: 3931–3944. doi: 10.1111/j.1558-5646.2012.01723.x 23206147

33. Slater GJ, Harmon LJ. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Met Ecol Evol. 2013;4: 699–702. doi: 10.1111/2041-210X.12091

34. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: Community Ecology Package. R package version 2.5–2. 2018. https://CRAN.R-project.org/package=vegan

35. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2007. GEIGER: investigating evolutionary radiations. Bioinformatics. 2007; 24: 129–131. doi: 10.1093/bioinformatics/btm538 18006550

36. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Met Ecol Evol. 2012;3: 217–223. doi: 10.1111/j.2041-210X.2011.00169.x

37. Stadler T. TreeSim: Simulating Phylogenetic Trees. R package version 2.3.; 2019; https://CRAN.R-project.org/package=TreeSim

38. Piras P, Silvestro D, Carotenuto F, Castiglione S, Kotsakis A, Maiorino L, et al. Evolution of the sabertooth mandible: A deadly ecomorphological specialization. Palaeogeogr Palaeoclimatol Palaeoecol. Elsevier; 2018;496: 166–174. doi: 10.1016/j.palaeo.2018.01.034

39. Christiansen P. Canine morphology in the larger Felidae: implications for feeding ecology. Biological Journal of the Linnean Society. Blackwell Publishing Ltd; 2007;91: 573–592. doi: 10.1111/j.1095-8312.2007.00819.x

40. Stayton, CT. convevol: Analysis of Convergent Evolution. R package version 1.3; 2018; https://CRAN.R-project.org/package=convevol

41. Mw Demment, Pj Vansoest. A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores. Am Nat. 1985;125: 641–672. doi: 10.1086/284369

42. Figueirido B, Janis CM, Pérez-Claros JA, De Renzi M, Palmqvist P. Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences. National Academy of Sciences; 2012;109: 722–727. doi: 10.1073/pnas.1110246108 22203974

43. Janis CM. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst. 1993;24: 467–500. doi: 10.1146/annurev.es.24.110193.002343

44. Mendoza M, Janis CM, Palmqvist P. Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J Zool. 2002;258: 223–246. doi: 10.1017/S0952836902001346

45. Damuth J, Janis CM. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biol Rev. 2011;86: 733–758. doi: 10.1111/j.1469-185X.2011.00176.x 21418504

46. Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D. The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution. 2010;64: 1489–1503. doi: 10.1111/j.1558-5646.2009.00921.x 20015238

47. Raia P, Carotenuto F, Passaro F, Piras P, Fulgione D, Werdelin L, et al. Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proc R Soc B Biol Sci. 2013;280: 20122244–20122244. doi: 10.1098/rspb.2012.2244 23173207

48. Mahler DL, Ingram T, Revell LJ, Losos JB. Exceptional Convergence on the Macroevolutionary Landscape in Island Lizard Radiations. Science. American Association for the Advancement of Science; 2013;341: 292–295. doi: 10.1126/science.1232392 23869019

49. Mahler DL, Revell LJ, Glor RE, Losos JB. Ecological opportunity and the rate of morphological evolution in the diversification of greater antillean anoles. Evolution. Blackwell Publishing Inc; 2010;64: 2731–2745. doi: 10.1111/j.1558-5646.2010.01026.x 20455931

50. Sanger TJ, Revell LJ, Gibson-Brown JJ, Losos JB. Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards. Proc R Soc B Biol Sci. 2012;279: 739–748. doi: 10.1098/rspb.2011.0840 21849319

51. Losos JB. Convergence, adaptation, and constraint. Evolution. 2011;65: 1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x 21729041

52. Piras P, Maiorino L, Raia P, Marcolini F, Salvi D. Functional and phylogenetic constraints in Rhinocerotinae craniodental morphology. Evol Ecol Res. 2010;128: 897–928.

53. Meloro C, Clauss M, Raia P. Ecomorphology of Carnivora challenges convergent evolution. Org Divers Evol. 2015;15: 711–720. doi: 10.1007/s13127-015-0227-5

54. Arbuckle K, Bennett CM, Speed MP. A simple measure of the strength of convergent evolution. Münkemüller T, editor. Met Ecol Evol. 2014;5: 685–693. doi: 10.1111/2041-210X.12195

55. Christiansen P. Canine morphology in the larger Felidae: implications for feeding ecology. Biol J Linn Soc. 2007;91: 573–592. doi: 10.1111/j.1095-8312.2007.00819.x

56. Meachen-Samuels JA. Morphological convergence of the prey-killing arsenal of sabertooth predators. Paleobiology. 2012;38: 1–14. doi: 10.1017/S0094837300000373

Článek vyšel v časopise


2019 Číslo 12