Synapsin 1 promotes Aβ generation via BACE1 modulation

Autoři: Masato Maesako aff001;  Katarzyna M. Zoltowska aff001;  Oksana Berezovska aff001
Působiště autorů: MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226368


It has been revealed that β-amyloid (Aβ) is generated and released from the presynaptic terminals in activity-dependent manner. However, molecules modulating the presynaptic Aβ generation remain elusive. Here we test the hypothesis that Synapsin 1 (Syn1) may acts as a modulator of the Aβ production. Using biochemical and Förster resonance energy transfer (FRET)-based imaging approaches we have found that Syn1 knock down decreases, whereas (over)expression of Syn1 in cells increases the Aβ levels. Mechanistically, Syn1 does not seem to affect the activity of Presenilin 1 (PS1)/γ-secretase, PS1 conformation, or the proximity between PS1 and amyloid precursor protein (APP). However, we found that Syn1 is involved in up-regulation of the β-site APP cleaving enzyme 1 (BACE1)/β-secretase activity and increases the APP/BACE1 interaction. Therefore, we conclude that Syn1 may promote Aβ production via the modulation of BACE1.

Klíčová slova:

Alzheimer's disease – Co-immunoprecipitation – Enzyme-linked immunoassays – Fluorescence resonance energy transfer – CHO cells – Neurons – Proteomics – Synaptic vesicles


1. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357. doi: 10.1038/nature04533 16541076

2. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. (2008) Amyloid-β-protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi: 10.1038/nm1782 18568035

3. Koffie R.M., Meyer-Luehmann M., Hashimoto T., Adams K.W., Mielke M.L., Garcia-Alloza M., et al. (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012–4017. doi: 10.1073/pnas.0811698106 19228947

4. Vassar R., Bennett B.D., Babu-Khan S., Kahn S., Mendiaz E.A., Denis P., et al. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. doi: 10.1126/science.286.5440.735 10531052

5. De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390. doi: 10.1038/34910 9450754

6. Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., and Selkoe D.J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517. doi: 10.1038/19077 10206644

7. Cirrito J.R., Yamada K.A., Finn M.B., Sloviter R.S., Bales K.R., May P.C., et al. (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922. doi: 10.1016/j.neuron.2005.10.028 16364896

8. Cirrito J.R., Kang J.E., Lee J., Stewart F.R., Verges D.K., Silverio L.M., et al. (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51. doi: 10.1016/j.neuron.2008.02.003 18400162

9. Dolev I., Fogel H., Milshtein H., Berdichevsky Y., Lipstein N., Brose N., et al. (2013) Spike bursts increase amyloid-beta 40/42 ratio by inducing a presenilin-1 conformational change. Nat Neurosci 16:587–595. doi: 10.1038/nn.3376 23563578

10. Yamamoto K., Tanei Z., Hashimoto T., Wakabayashi T., Okuno H., Naka Y., et al. (2015) Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease. Cell Rep 11:859–865. doi: 10.1016/j.celrep.2015.04.017 25937280

11. Uemura K., Lill C.M., Banks M., Asada M., Aoyagi N., Ando K., et al. (2009) N-cadherin-based adhesion enhances Abeta release and decreases Abeta42/40 ratio. J Neurochem 108:350–360. doi: 10.1111/j.1471-4159.2008.05760.x 19046403

12. Wu J., Petralia R.S., Kurushima H., Patel H., Jung M.Y., Volk L., et al. (2011) Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent beta-amyloid generation. Cell 147:615–628. doi: 10.1016/j.cell.2011.09.036 22036569

13. Kuzuya A., Zoltowska K.M., Post K.L., Arimon M., Li X., Svirsky S., et al. (2016) Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol 14:25. doi: 10.1186/s12915-016-0248-3 27036734

14. Zoltowska K.M., Maesako M., Lushnikova I., Takeda S., Keller L.J., Skibo G., et al. (2017) Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid beta production. Mol Neurodegener 12:15. doi: 10.1186/s13024-017-0159-y 28193235

15. Bahler M., and Greengard P. (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326:704–707. doi: 10.1038/326704a0 3104800

16. Petrucci T.C., and Morrow J.S. (1987) Synapsin I: an actin-bundling protein under phosphorylation control. J Cell Biol 105:1355–1363. doi: 10.1083/jcb.105.3.1355 3115996

17. Xia W., Zhang J., Kholodenko D., Citron M., Podlisny M.B., Teplow D.B., et al. (1997) Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272:7977–7982. doi: 10.1074/jbc.272.12.7977 9065468

18. Uemura K., Lill C.M., Li X., Peters J.A., Ivanov A., Fan Z., et al. (2009) Allosteric modulation of PS1/gamma-secretase conformation correlates with amyloid beta(42/40) ratio. PLoS One 4:e7893. doi: 10.1371/journal.pone.0007893 19924286

19. Maesako M., Horlacher J., Zoltowska K.M., Kastanenka K.V., Kara E., Svirsky S., et al. (2017) Pathogenic PS1 phosphorylation at Ser367. Elife 6. e19720 doi: 10.7554/eLife.19720 28132667

20. Kakuda N., Funamoto S., Yagishita S., Takami M., Osawa S., Dohmae N., et al. (2006) Equimolar production of amyloid beta-protein and amyloid precursor protein intracellular domain from beta-carboxyl-terminal fragment by gamma-secretase. J Biol Chem 281:14776–14786. doi: 10.1074/jbc.M513453200 16595682

21. Berezovska O, Ramdya P, Skoch J, Wolfe MS, Bacskai BJ, Hyman BT. (2003) Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1-gamma-secretase complex in cells demonstrated by fluorescence lifetime imaging. J Neurosci 1;23(11):4560–6. doi: 10.1523/JNEUROSCI.23-11-04560.2003 12805296

22. Berezovska O, Lleo A, Herl LD, Frosch MP, Stern EA, Bacskai BJ, et al. (2005) Familial Alzheimer's disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 16;25(11):3009–17.

23. Takahashi R.H., Milner T.A., Li F., Nam E.E., Edgar M.A., Yamaguchi H., et al. (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879. doi: 10.1016/s0002-9440(10)64463-x 12414533

24. Takahashi R.H., Almeida C.G., Kearney P.F., Yu F., Lin M.T., Milner T.A., et al. (2004) Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599. doi: 10.1523/JNEUROSCI.5167-03.2004 15071107

25. Kim S.H., Fraser P.E., Westaway D., St George-Hyslop P.H., Ehrlich M.E., and Gandy S. (2010) Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer's amyloid(beta)42 from isolated intact nerve terminals. J Neurosci 30:3870–3875. doi: 10.1523/JNEUROSCI.4717-09.2010 20237257

26. Groemer T.W., Thiel C.S., Holt M., Riedel D., Hua Y., Huve J., et al. (2011) Amyloid precursor protein is trafficked and secreted via synaptic vesicles. PLoS One 6:e18754. doi: 10.1371/journal.pone.0018754 21556148

27. Kandalepas P.C., Sadleir K.R., Eimer W.A., Zhao J., Nicholson D.A., and Vassar R. (2013) The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126:329–352. doi: 10.1007/s00401-013-1152-3 23820808

28. Rizzoli S.O., and Betz W.J. (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69. doi: 10.1038/nrn1583 15611727

29. Krueger B.K., Forn J., and Greengard P. (1977) Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem 252:2764–2773. 323254

30. Brose N, Petrenko AG, Südhof TC, Jahn R. (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 15;256(5059):1021–5. doi: 10.1126/science.1589771 1589771

31. Geppert M., Goda Y., Hammer R.E., Li C., Rosahl T.W., Stevens C.F., et al. (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727. doi: 10.1016/0092-8674(94)90556-8 7954835

32. Reist N.E., Buchanan J., Li J., DiAntonio A., Buxton E.M., and Schwarz T.L. (1998) Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J Neurosci 18:7662–7673. doi: 10.1523/JNEUROSCI.18-19-07662.1998 9742137

33. Del Prete D., Lombino F., Liu X., and D'Adamio L. (2014) APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions. PLoS One 9:e108576. doi: 10.1371/journal.pone.0108576 25247712

34. Gautam V, D'Avanzo C, Berezovska O, Tanzi RE, Kovacs DM. (2015) Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener. 23;10:31.

35. Chen A.C., Kim S., Shepardson N., Patel S., Hong S., and Selkoe D.J. (2015) Physical and functional interaction between the alpha- and gamma-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 211:1157–1176. doi: 10.1083/jcb.201502001 26694839

36. Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. (2019) A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol. Feb 4;218(2):644–663 doi: 10.1083/jcb.201806205 30626721

37. Hong L., Koelsch G., Lin X., Wu S., Terzyan S., Ghosh A.K., et al. (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290:150–153. doi: 10.1126/science.290.5489.150 11021803

38. Patel S., Vuillard L., Cleasby A., Murray C.W., and Yon J. (2004) Apo and inhibitor complex structures of BACE (beta-secretase). J Mol Biol 343:407–416. doi: 10.1016/j.jmb.2004.08.018 15451669

39. Shimizu H., Tosaki A., Kaneko K., Hisano T., Sakurai T., and Nukina N. (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Mol Cell Biol 28:3663–3671. doi: 10.1128/MCB.02185-07 18378702

40. Fukumoto H., Cheung B.S., Hyman B.T., and Irizarry M.C. (2002) Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381–1389. doi: 10.1001/archneur.59.9.1381 12223024

41. Kinoshita A., Fukumoto H., Shah T., Whelan C.M., Irizarry M.C., and Hyman B.T. (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346. doi: 10.1242/jcs.00643 12829747

42. Chin L.S., Li L., Ferreira A., Kosik K.S., Greengard P. (1995) Impairment of axonal development and of synaptogenesis in hippocampal neurons of synpasin1 deficient mice. Proc Natl Acad Sci U S A 92, 9230–34 doi: 10.1073/pnas.92.20.9230 7568107

Článek vyšel v časopise


2019 Číslo 12