An investigation of far and near transfer in a gamified visual learning paradigm

Autoři: Stefanie Duyck aff001;  Hans Op de Beeck aff001
Působiště autorů: Brain and Cognition, Faculty of Psychology and Educational Sciences, University of Leuven (KU Leuven), Leuven, Belgium aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


After training, visual perceptual learning improvements are mostly constrained to the trained stimulus feature and retinal location. The aim of this study is to construct an integrated paradigm where the visual learning happens in a more natural context and in parallel for multiple stimulus types, and to test the generalization of learning-related improvements towards untrained features, locations, and more general cognitive domains. Half the subjects were trained with a gamified perceptual learning paradigm for ten hours, which consisted of an orientation discrimination task and a novel object categorization task embedded in a three-dimensional maze. A second group of subjects, an active control group, played ten hours of Candy Crush Saga. Before and after training, all subjects completed a ‘near transfer’ orientation discrimination and novel object categorization task, as well as a set of ‘far transfer’ general cognitive and attentional tasks. During the perceptual learning tasks, two different stimulus features and two retinal location pairs were assessed in each task. For the experimental group, one stimulus feature and retinal location pair was trained, whilst the other one remained untrained. Both features and location pairs were untrained in the control group. Far transfer did occur in some domains across all subjects irrespective of the training regimen (i.e. executive functioning, mental rotation performance, and multitask performance and speed). Near transfer was present in both groups, however only more pronounced for one particular task in the experimental group, namely novel object categorization. To conclude, all but one near transfer task did not generalize more than the control group.

Klíčová slova:

Attention – Games – Learning – Perceptual learning – Reaction time – Video games – Vision


1. Gladwell M. Outliers: The Story of Success. Hachette UK. 2008. doi: 10.5465/AMP.2010.52842954

2. Ericsson KA, Hoffman RR, Kozbelt A, Williams AM, editors. The Cambridge Handbook of Expertise and Expert Performance. 2nd ed. Cambridge University Press; 2018.

3. Ahissar M, Hochstein S. Task difficulty and the specificity of perceptual learning. Nature. 1997;387: 401–406. doi: 10.1038/387401a0 9163425

4. Jeter PE, Dosher BA, Petrov A, Lu Z. Task precision at transfer determines specificity of perceptual learning. J Vis. 2009;9: 1–13. doi: 10.1167/9.3.1.Introduction

5. Karni A, Sagi D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A. 1991;88: 4966–4970. doi: 10.1073/pnas.88.11.4966 2052578

6. Vogels R, Orban GA. The effect of practice on the oblique inline orientation. Vision Res. 1985;25: 1679–1685. doi: 10.1016/0042-6989(85)90140-3 3832592

7. Deveau J, Seitz AR. Applying perceptual learning to achieve practical changes in vision. Front Psychol. 2014;5: 1–6. doi: 10.3389/fpsyg.2014.00001

8. Sagi D. Perceptual learning in Vision Research. Vision Res. Elsevier Ltd; 2011;51: 1552–1566. doi: 10.1016/j.visres.2010.10.019 20974167

9. Rubin N, Nakayama K, Shapley R. Abrupt learning and retinal size specificity in illusory-contour perception. Curr Biol. 1997;7: 461–467. doi: 10.1016/s0960-9822(06)00217-x 9210373

10. Liu Z. Perceptual learning in motion discrimination that generalizes across motion directions. Proc Natl Acad Sci U S A. 1999;96: 14085–14087. doi: 10.1073/pnas.96.24.14085 10570202

11. Xiao LQ, Zhang JY, Wang R, Klein SA, Levi DM, Yu C. Complete Transfer of Perceptual Learning across Retinal Locations Enabled by Double Training. Curr Biol. Elsevier Ltd; 2008;18: 1922–1926. doi: 10.1016/j.cub.2008.10.030 19062277

12. Wang R, Zhang J-Y, Klein SA, Levi DM, Yu C. Vernier perceptual learning transfers to completely untrained retinal locations after double training: a “piggybacking” effect. J Vis. 2014;14: 12. doi: 10.1167/14.13.12 25398974

13. Zhang J, Yu C. The transfer of motion direction learning to an opposite direction enabled by double training: A reply to Liang et al. (2015). J Vis. 2016;16: 1–4. doi: 10.1167/16.3.29 26894513

14. Zhang T, Xiao LQ, Klein SA, Levi DM, Yu C. Decoupling location specificity from perceptual learning of orientation discrimination. Vision Res. Elsevier Ltd; 2010;50: 368–374. doi: 10.1016/j.visres.2009.08.024 19716377

15. Xiong Y-Z, Tang D-L, Zhang Y-X, Yu C. Complete Cross-Frequency Transfer of Tone Frequency Learning After Double Training. J Exp Psychol Gen. 2019; Forthcoming.

16. Cong L, Wang R, Yu C, Zhang J-Y. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training. J Vis. 2016;16: 1–9. doi: 10.1167/16.3.13 26873777

17. Huang J, Liang J, Zhou Y, Liu Z. Transfer in motion discrimination learning was no greater in double training than in single training. J Vis. 2017;17: 1–10. doi: 10.1167/17.6.7.doi

18. Liang J, Zhou Y, Fahle M, Liu Z. Specificity of motion discrimination learning even with double training and staircase. J Vis. 2015;15: 1–10. doi: 10.1167/15.10.3 26230918

19. Chung STL, Legge GE, Cheung SH. Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vision Res. 2004;44: 695–709. doi: 10.1016/j.visres.2003.09.028 14751554

20. Deveau J, Ozer DJ, Seitz AR. Improved vision and on-field performance in baseball through perceptual learning. Curr Biol. Elsevier; 2014;24: R146–R147. doi: 10.1016/j.cub.2014.01.004 24556432

21. Levi DM, Li RW. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Res. Elsevier Ltd; 2009;49: 2535–2549. doi: 10.1016/j.visres.2009.02.010 19250947

22. Polat U. Making perceptual learning practical to improve visual functions. Vision Res. Elsevier Ltd; 2009;49: 2566–2573. doi: 10.1016/j.visres.2009.06.005 19520103

23. Huxlin KR, Martin T, Kelly K, Riley M, Friedman DI, Burgin WS, et al. Perceptual Relearning of Complex Visual Motion after V1 Damage in Humans. J Neurosci. 2009;29: 3981–3991. doi: 10.1523/JNEUROSCI.4882-08.2009 19339594

24. Green CS, Bavelier D. Action video game modifies visual selective attention. Nature. 2003;423: 534–537. doi: 10.1038/nature01647 12774121

25. Bediou B, Adams DM, Mayer RE, Tipton E, Green SC, Bavelier D. Meta-Analysis of Action Video Game Impact on Perceptual, Attentional, and Cognitive Skills. Psychol Bull. 2017; doi: 10.1037/bul0000130 29172564

26. Deveau J, Lovcik G, Seitz AR. Broad-based visual benefits from training with an integrated perceptual-learning video game. Vision Res. Elsevier Ltd; 2014;99: 134–140. doi: 10.1016/j.visres.2013.12.015 24406157

27. Shams L, Seitz AR. Benefits of multisensory learning. Trends Cogn Sci. 2008;12: 411–417. doi: 10.1016/j.tics.2008.07.006 18805039

28. Jeter PE, Dosher BA, Liu SH, Lu ZL. Specificity of perceptual learning increases with increased training. Vision Res. Elsevier Ltd; 2010;50: 1928–1940. doi: 10.1016/j.visres.2010.06.016 20624413

29. Hung S-C, Seitz AR. Prolonged Training at Threshold Promotes Robust Retinotopic Specificity in Perceptual Learning. J Neurosci. 2014;34: 8423–8431. doi: 10.1523/JNEUROSCI.0745-14.2014 24948798

30. Krigolson OE, Pierce LJ, Holroyd CB, Tanaka JW. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Ann Neurosci. 2011;18: 113–114. doi: 10.5214/ans.0972.7531.1118307 25205935

31. Vlahou EL, Protopapas A, Seitz AR. Implicit training of nonnative speech stimuli. J Exp Psychol Gen. 2012;141: 363–381. doi: 10.1037/a0025014 21910556

32. Seitz AR, Kim R, Shams L. Sound Facilitates Visual Learning. Curr Biol. 2006;16: 1422–1427. doi: 10.1016/j.cub.2006.05.048 16860741

33. Sala G, Gobet F. Cognitive Training Does Not Enhance General Cognition. Trends Cogn Sci. Elsevier Ltd; 2018;23: 9–20. doi: 10.1016/j.tics.2018.10.004 30471868

34. Sala G, Tatlidil KS, Gobet F. Video Game Training Does Not Enhance Cognitive Ability: A Comprehensive Meta-Analytic Investigation. Psychol Bull. 2018; doi: 10.1037/bul0000139 29239631

35. Schoups AA, Vogels R, Qian N, Orban GA. Practising orientation identification improves orientation coding in V1 neurons. Nature. 2001;412: 549–553. doi: 10.1038/35087601 11484056

36. Brants M, Bulthé J, Daniels N, Wagemans J, Op de Beeck HP. How learning might strengthen existing visual object representations in human object-selective cortex. Neuroimage. Elsevier Inc.; 2016;127: 74–85. doi: 10.1016/j.neuroimage.2015.11.063 26658928

37. Op de Beeck HP, Baker CI, DiCarlo JJ, Kanwisher NG. Discrimination training alters object representations in human extrastriate cortex. J Neurosci. 2006;26: 13025–36. doi: 10.1523/JNEUROSCI.2481-06.2006 17167092

38. Seriès P, Seitz AR. Learning what to expect (in visual perception). Front Hum Neurosci. 2013;7: 668. doi: 10.3389/fnhum.2013.00668 24187536

39. Bar M. Visual objects in context. Nat Rev Neurosci. 2004;5: 617–629. doi: 10.1038/nrn1476 15263892

40. Green CS, Pouget A, Bavelier D. Improved probabilistic inference as a general learning mechanism with action video games. Curr Biol. Elsevier Ltd; 2010;20: 1573–1579. doi: 10.1016/j.cub.2010.07.040 20833324

41. Chen C, Leung L. Are you addicted to Candy Crush Saga? An exploratory study linking psychological factors to mobile social game addiction. Telemat Informatics. Elsevier Ltd; 2016;33: 1155–1166. doi: 10.1016/j.tele.2015.11.005

42. Larche CJ, Musielak N, Dixon MJ. The Candy Crush Sweet Tooth: How ‘Near-misses’ in Candy Crush Increase Frustration, and the Urge to Continue Gameplay. J Gambl Stud. Springer US; 2017;33: 599–615. doi: 10.1007/s10899-016-9633-7 27435416

43. Green CS, Bavelier D. Action video game modifies visual selective attention. Nature. 2003;423: 534–7. doi: 10.1038/nature01647 12774121

44. Green CS, Bavelier D. Enumeration versus multiple object tracking: the case of action video game players. Cognition. 2006;101: 217–245. doi: 10.1016/j.cognition.2005.10.004 16359652

45. Okagaki L, Frensch PA. Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. J Appl Dev Psychol. 1994;15: 33–58. doi: 10.1016/0193-3973(94)90005-1

46. Dye MWG, Green CS, Bavelier D. The development of attention skills in action video game players. Neuropsychologia. 2009;47: 1780–1789. doi: 10.1016/j.neuropsychologia.2009.02.002 19428410

47. Ganis G, Kievit R. A new set of three-dimensional shapes for investigating mental rotation processes: validation data and stimulus set. J Open Psychol data. 2013;3: 1–31.

48. Feng J, Spence I, Pratt J. Playing an action video game reduces gender differences in spatial cognition. Psychol Sci. 2007;18: 850–855. doi: 10.1111/j.1467-9280.2007.01990.x 17894600

49. Strobach T, Frensch PA, Schubert T. Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychol (Amst). Elsevier B.V.; 2012;140: 13–24. doi: 10.1016/j.actpsy.2012.02.001 22426427

50. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training enhances cognitive control in older adults. Nature. Nature Publishing Group; 2013;501: 97–101. doi: 10.1038/nature12486 24005416

51. Dye MWG, Green CS, Bavelier D, Matthew WG. Increasing Speed of Processing With Action Video Games. Curr Dir Psychol Sci. 2009;18: 321–326. doi: 10.1111/j.1467-8721.2009.01660.x 20485453

52. Broadbent DE, Cooper PF, FitzGerald P, Parkes KR. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br J Clin Psychol. 1982;21 (Pt 1): 1–16. doi: 10.1111/j.2044-8260.1982.tb01421.x 7126941

53. Aberg KC, Tartaglia EM, Herzog MH. Perceptual learning with Chevrons requires a minimal number of trials, transfers to untrained directions, but does not require sleep. Vision Res. Elsevier Ltd; 2009;49: 2087–2094. doi: 10.1016/j.visres.2009.05.020 19505495

54. Wang R, Zhang JY, Klein SA, Levi DM, Yu C. Task relevancy and demand modulate double-training enabled transfer of perceptual learning. Vision Res. Elsevier Ltd; 2012;61: 33–38. doi: 10.1016/j.visres.2011.07.019 21820004

55. Harris H, Gliksberg M, Sagi D. Generalized perceptual learning in the absence of sensory adaptation. Curr Biol. Elsevier Ltd; 2012;22: 1813–1817. doi: 10.1016/j.cub.2012.07.059 22921366

56. Talluri BC, Hung S-C, Seitz AR, Seriès P. Confidence-based integrated reweighting model of task-difficulty explains location-based specificity in perceptual learning. J Vis. 2015;15: 17. doi: 10.1167/15.10.17 26720153

57. Herzog MH, Cretenoud AF, Grzeczkowski L. What is new in perceptual learning. J Vsion. 2017;17: 1–4. doi: 10.1016/S0001-6918(61)80139-X

58. Kok P, Jehee JFM, de Lange FP. Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex. Neuron. 2012;75: 265–270. doi: 10.1016/j.neuron.2012.04.034 22841311

59. Bang JW, Rahnev D. Stimulus expectation alters decision criterion but not sensory signal in perceptual decision making. Sci Rep. Springer US; 2017;7: 1–13. doi: 10.1038/s41598-016-0028-x 29213117

60. Cheadle S, Egner T, Wyart V, Wu C, Summerfield C. Feature expectation heightens visual sensitivity during fine orientation discrimination. J Vis. 2015;15: 14. doi: 10.1167/15.14.14 26505967

61. Summerfield C, Egner T. Expectation (and attention) in visual cognition. Trends Cogn Sci. 2009;13: 403–409. doi: 10.1016/j.tics.2009.06.003 19716752

62. Choe KW, Blake R, Lee S-H. Dissociation between Neural Signatures of Stimulus and Choice in Population Activity of Human V1 during Perceptual Decision-Making. J Neurosci. 2014;34: 2725–2743. doi: 10.1523/JNEUROSCI.1606-13.2014 24523561

63. Zhang Y, Du G, Yang Y, Qin W, Li X, Zhang Q. Higher integrity of the motor and visual pathways in long-term video game players. Front Hum Neurosci. 2015;9: 98. doi: 10.3389/fnhum.2015.00098 25805981

64. Woodworth RS, Throndike EL. The influence of improvement in one mental function upon the efficiency of other functions.(I). Psychol Rev. 1901;8: 247–261. Available:

65. Powers KL, Brooks PJ, Aldrich NJ, Palladino M a, Alfieri L. Effects of video-game play on information processing: a meta-analytic investigation. Psychon Bull Rev. 2013;20: 1055–1079. doi: 10.3758/s13423-013-0418-z 23519430

66. Toril P, Reales JM, Ballesteros S. Video Game Training Enhances Cognition of Older Adults: A Meta-Analytic Study. Psychol Aging. 2014;29: 706–716. doi: 10.1037/a0037507 25244488

67. Wang P, Liu H-H, Zhu X-T, Meng T, Li H-J, Zuo X-N. Action Video Game Training for Healthy Adults: A Meta-Analytic Study. Front Psychol. 2016;7: 1–13. doi: 10.3389/fpsyg.2016.00001

68. Klingberg T. Training and plasticity of working memory. Trends Cogn Sci. Elsevier Ltd; 2010;14: 317–324. doi: 10.1016/j.tics.2010.05.002 20630350

69. Ballesteros S. Brain-Training Games Help Prevent Cognitive Decline in Older Adults. In: Ferguson CJ, editor. Video game influences on agression, cognition, and attention. Springer, Cham; 2018.

70. Huang V, Young M, Fiocco AJ. The Association Between Video Game Play and Cognitive Function: Does Gaming Platform Matter? Cyberpsychology, Behav Soc Netw. 2017;20: 689–694. doi: 10.1089/cyber.2017.0241 29048933

71. Dobrowolski P, Hanusz K, Sobczyk B, Skorko M, Wiatrow A. Cognitive enhancement in video game players: The role of video game genre. Comput Human Behav. Elsevier Ltd; 2015;44: 59–63. doi: 10.1016/j.chb.2014.11.051

72. Oei AC, Patterson MD. Enhancing Cognition with Video Games: A Multiple Game Training Study. PLoS One. 2013;8. doi: 10.1371/journal.pone.0058546 23516504

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden