Development of the mandibular curve of spee and maxillary compensating curve: A finite element model


Autoři: Steven D. Marshall aff001;  Karen Kruger aff002;  Robert G. Franciscus aff003;  Thomas E. Southard aff001
Působiště autorů: Department of Orthodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, Iowa, United States of America aff001;  Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America aff002;  Department of Anthropology, The University of Iowa, Iowa City, Iowa, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0221137

Souhrn

The curved planes of the human dentition seen in the sagittal view, the mandibular curve of Spee and the maxillary compensating curve, have clinical importance to modern dentistry and potential relevance to the craniofacial evolution of hominins. However, the mechanism providing the formation of these curved planes is poorly understood. To explore this further, we use a simplified finite element model, consisting of maxillary and mandibular “blocks”, developed to simulate tooth eruption, and forces opposing eruption, during simplified masticatory function. We test our hypothesis that curved occlusal planes develop from interplay between tooth eruption, occlusal load, and mandibular movement. Our results indicate that our simulation of rhythmic chewing movement, tooth eruption, and tooth eruption inhibition, applied concurrently, results in a transformation of the contacting maxillary and mandibular block surfaces from flat to curved. The depth of the curvature appears to be dependent on the radius length of the rotating (chewing) movement of the mandibular block. Our results suggest mandibular function and maxillo-mandibular spatial relationship may contribute to the development of human occlusal curvature.

Klíčová slova:

Dentition – Eating – Finite element analysis – Musculoskeletal system – Paleobiology – Teeth – Tooth eruption – Hominin evolution


Zdroje

1. Osborn JW. Orientation of the masseter muscle and the curve of Spee in relation to crushing forces on the molar teeth of primates. Am J Phys Anthropol. 1993;92 (1):99–106. doi: 10.1002/ajpa.1330920108 8238294

2. Laird MF, Holton NE, Scott JE, Franciscus RG, Marshall SD, Southard TE. Spatial determinants of the mandibular curve of Spee in modern and archaic Homo. Am J Phys Anthropol 2016 Oct;161(2):226–36. doi: 10.1002/ajpa.23020 27346254

3. Spee FG. Die verschiebungsbahn des unterkiefers am schadel. Arch Anat Physiol 1890:285–294.

4. Spee FG, Beidenbach MA, Hotz M, Hitchcock HP. The gliding path of the mandible along the skull. J Am Dent Assoc 1980;100:670–5. 6988491

5. Osborn JW. Relationship between the mandibular condyle and the occlusal plane during hominid evolution: Some effects on jaw mechanics. Am J Phys Anthropol 1987;73:193–207. doi: 10.1002/ajpa.1330730206 3113263

6. Baragar FA, Osborn JW. Efficiency as a predictor of human jaw design in the sagittal plane. J Biomech 1987;73:193–207.

7. Ash MM, Stanley JN. Wheeler’s dental anatomy, physiology and occlusion, 8th ed. Philadelphia: Saunders; 2003.

8. Okeson JP. The determinants of occlusal morphology. In: Management of temporomandibular disorders and occlusion. 7th ed. St. Louis: Elsevier Mosby; 2013.

9. Andrews FL. The six keys to normal occlusion. Am J Orthod 1972;62:296–309. doi: 10.1016/s0002-9416(72)90268-0 4505873

10. Koyama TA. Comparative analysis of the curve of Spee (lateral aspect) before and after orthodontic treatment—with particular reference to overbite patients. J Nihon Univ Sch Dent. 1979;21(1–4):25–34. doi: 10.2334/josnusd1959.21.25 297134

11. Orthlieb JD. The curve of Spee: understanding the sagittal organization of mandibular teeth. Cranio 1997;15(4):333–40. doi: 10.1080/08869634.1997.11746028 9481996

12. Carcara S., Preston CB., Jureyda O. The relationship between the curve of Spee, relapse, and the Alexander discipline. Semin Orthod 2001;7(2):90–99.

13. De Praeter J, Dermaut L, Martens G, Kuijpers-Jagtman A. Long-term stability of the leveling of the curve of Spee. Am J Orthod Dentofacial Orthop 2002;121:266–72. doi: 10.1067/mod.2002.121009 11941340

14. Farella M, Michelotti A, Martina R. The curve of Spee and craniofacial morphology: a multiple regression analysis. Eur J Oral Sci 2002;110:277–281. doi: 10.1034/j.1600-0722.2002.21255.x 12206588

15. Lynch CD, McConnell. Prosthodontic management of the curve of Spee: Use of the Broadrick flag. J Prosthet Dent 2002;87:593–7. doi: 10.1067/mpr.2002.125178 12131879

16. Shannon KR, Nanda R. Changes in the curve of Spee with treatment and at 2 years posttreatment. Am J Orthod Dentofacial Orthop 2004;125:589–96. doi: 10.1016/j.ajodo.2003.09.027 15127028

17. Cheon SH, Park YH, Paik KS, Ahn SJ, Hayashi K, Yi WJ, et al. Relationship between the curve of Spee and dentofacial morphology evaluated with a 3-dimensional reconstruction method in Korean adults. Am J Orthod Dentofacial Orthop. 2008;133(5):640.e7–14.

18. Rozzi M, Mucedero M, Pezzuto C, Cozza P. Leveling the curve of Spee with continuous archwire appliances in different vertical skeletal patterns: A retrospective study. Am J Orthod Dentofacial Orthop. 2017;151(4):758–766. doi: 10.1016/j.ajodo.2016.09.023 28364900

19. Marshall SD, Caspersen M, Hardinger RR, Franciscus RG, Aquilino SA, Southard TE. Development of the curve of Spee. Am J Orthod Dentofacial Orthop. 2008;134(3):344–52. doi: 10.1016/j.ajodo.2006.10.037 18774080

20. Veli I, Ozturk MA, Uysal T. Curve of Spee and its relationship to vertical eruption of teeth among different malocclusion groups. Am J Orthod Dentofacial Orthop. 2015;147(3):305–12. doi: 10.1016/j.ajodo.2014.10.031 25726397

21. Xu H, Suzuki T, Muronoi M, Ooya K. An evaluation of the curve of Spee in the maxilla and mandible of human permanent healthy dentitions. J Prosthet Dent. 2004;92(6):536–9. doi: 10.1016/j.prosdent.2004.08.023 15583558

22. Batham PR, Tandon P, Sharma VP, Singh A. Curve of Spee and its relationship with dentoskeletal morphology. J Indian Orthod Soc, 2013;47(3):28–134.

23. Proffit WR, Frazier-Bowers SA. Mechanism and control of tooth eruption: overview and clinical implications. Orthod Craniofac Res 2009;12:59–66. doi: 10.1111/j.1601-6343.2009.01438.x 19419448

24. Proffit WR. Equilibrium theory revisited: factors influencing the position of teeth. Angle Orthod 1978;48:175–86. 280125

25. Richmond BG, Wright BW, Grosse IR, Dechow PR, Ross CF, Spencer M. Finite element analysis in functional morphology. Anat Rec. Part A, Discoveries in molecular, cellular, and evolutionary biology. 2005;283. 259–74.

26. Ferrario VF, Sforza C, Miani A Jr. Statistical evaluation of Monson's sphere in healthy permanent dentitions in man. Arch oral biol 1997 May 1;42(5):365–9. doi: 10.1016/s0003-9969(97)00021-6 9233845

27. Craig RG, Selected properties of dental composites. J Dent Res 1979;58(5):1544–1550. doi: 10.1177/00220345790580052001 285966

28. Archard JF, Contact and rubbing of flat surfaces. J Appl Phys 1953;24(8):981–988.

29. Xu WL, Bronlund JE, Potgieter J, Foster KD, Röhrle O, Pullan AJ, et al. Review of the human masticatory system and masticatory robotics. Mech Mach Theory 2008;43:1353–75.

30. Benazzi S, Nguyen HN, Kullmer O, Kupczik K. Dynamic modelling of tooth deformation using occlusal kinematics and finite element analysis. PLOS One 2016; 11(3): e0152663. doi: 10.1371/journal.pone.0152663 27031836

31. Weinstein S, Haack DC, Morris LY, Snyder BB, Attaway HE. On an equilibrium theory of tooth position. Angle Orthod 1963;1:1–26.

32. Koolstra JH. Dynamics of the human masticatory system. Crit Rev Oral Biol Med. 2002;13:366–76. doi: 10.1177/154411130201300406 12191962

33. Lavigne GL, Rompre PH, Poirier G, Huard H, Kato T, Montplaisir JY. Rhythmic masticatory muscle activity during sleep in humans. J Dent Res 2001b;80:443–48.

34. Lavigne GL, Khoury S, Abe S, Yamaguchi T, Raphael K. Bruxism physiology and pathology: An overview for clinicians. J Oral Rehab 2008;35:476–94.

35. Po JMC, Gallo LM, Michelotti A, Farella M. Comparison between rhythmic jaw contractions occurring during sleep and while chewing. J Sleep Res 2013;22:593–99. doi: 10.1111/jsr.12057 23701424

36. Sicher H. Tooth eruption: The axial movement of continuously growing teeth. J Dent Res 1942;21(2): 201–10.

37. Hylander WL. Morphological changes in human teeth and jaws in a high-attrition environment. In: Dahlberg AA, Graber TM, editors. Orofacial growth and development. Paris: Mouton Publishers; 1977. p. 301–333.

38. Ainamo A, Ainamo J. The width of attached gingivae on supra-erupted teeth. J Periodontal Res 1978;3:194–98.

39. Levers BGH, Darling AI. Continuous eruption of some adult human teeth of ancient populations. Arch Oral Biol 1983;28:401–408. doi: 10.1016/0003-9969(83)90135-8 6354154

40. Compgnon D, Woda A. Supra-eruption of the unopposed maxillary molar. J Prosthet Dent 1991;66:29–34. doi: 10.1016/0022-3913(91)90347-y 1941670

41. Danenberg PJ, Hirsch RS, Clarke NG, Leppard PI, Richards LC. Continuous tooth eruption in Australian aboriginal skulls. Am J Phys Anthropol 1991;85:305–312. doi: 10.1002/ajpa.1330850309 1897603

42. Kiliardis S, Lyka I, Friede H, Carrlson GE, Ahlquist M. Vertical position, rotation, and tipping of molars without antagonists. Int J Prosthodont 2000;13:480–86. 11203673


Článek vyšel v časopise

PLOS One


2019 Číslo 12