Root and alveolar bone changes in first premolars adjacent to the traction of buccal versus palatal maxillary impacted canines


Autoři: Yalil Augusto Rodríguez-Cárdenas aff001;  Gustavo Armando Ruíz-Mora aff001;  Aron Aliaga-Del Castillo aff002;  Heraldo Luis Dias-Da Silveira aff003;  Luis Ernesto Arriola-Guillén aff004
Působiště autorů: Division of Oral and Maxillofacial Radiology, School of Dentistry, Universidad Científica del Sur, Lima, Perú aff001;  Department of Orthodontics, Bauru Dental School, University of São Paulo, Brazil aff002;  Division of Oral Radiology, Department of Surgery and Orthopedics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil aff003;  Division of Orthodontics and Division of Oral and Maxillofacial Radiology, School of Dentistry, Universidad Científica del Sur, Lima, Perú aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226267

Souhrn

Objective

To compare the root and alveolar bone changes in first premolars adjacent to the orthodontic traction of buccal versus palatal maxillary impacted canines (MIC).

Materials and methods

Before and after traction, cone beam tomographic computed (CBCTs) of 25 subjects with unilateral/bilateral MIC were included in this follow-up and retrospective study. Thirty-six first premolars were divided into 2 groups, buccal (n = 15) or palatal (n = 21) MIC, and the tomographic images were evaluated before and after orthodontic traction. Root changes in length and area were measured in sagittal, coronal and axial sections. Dimensions of alveolar bone were evaluated in coronal sections. Intergroup and intragroup comparisons were performed using t or Mann-Whitney U tests. Multiple linear regressions analyses were used to evaluate the influence of all predictor variables on root and alveolar bone changes (P<0.05).

Results

Root and alveolar bone changes produced by orthodontic traction were not significant between groups. Root changes were smaller than 1 mm (length) and 2.51 mm2 (area). Alveolar bone changes between buccal and palatal MIC groups ranged from 0.13 mm to 1.69 mm Furthermore, the multivariate analysis showed no significant influence of the impaction condition (buccal or palatal) on root change. Nevertheless, some different predictor variables of the MIC influence these changes. In the alveolar bone, the maximum upper alveolar width (MUAW) is the most affected by the traction of the MIC.

Conclusions

Orthodontic traction of buccal vs palatal MIC produces similar resorptive and appositional root and alveolar bone changes in the adjacent first premolars, without clinical relevance.

Klíčová slova:

Alveolar bone – Computed axial tomography – Orthodontics – Retrospective studies – Teeth – Incisors


Zdroje

1. Ericson S, Kurol J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur J Orthod. 1988;10:283–95. doi: 10.1093/ejo/10.4.283 3208843

2. Brusveen EM, Brudvik P, Boe OE, Mavragani M. Apical root resorption of incisors after orthodontic treatment of impacted maxillary canines: a radiographic study. Am J Orthod Dentofacial Orthop. 2012;141:427–35. doi: 10.1016/j.ajodo.2011.10.022 22464524

3. Woloshyn H, Artun J, Kennedy DB, Joondeph DR. Pulpal and periodontal reactions to orthodontic alignment of palatally impacted canines. Angle Orthod. 1994;64:257–64. doi: 10.1043/0003-3219(1994)064<0257:PAPRTO>2.0.CO;2 7978520

4. Yan B, Sun Z, Fields H, Wang L. Maxillary canine impaction increases root resorption risk of adjacent teeth: a problem of physical proximity. Am J Orthod Dentofacial Orthop. 2012;142:750–7. doi: 10.1016/j.ajodo.2012.07.016 23195360

5. Silva AC, Capistrano A, Almeida-Pedrin RR, Cardoso MA, Conti AC, Capelozza LF. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation. J Appl Oral Sci. 2017;25:75–81. doi: 10.1590/1678-77572016-0133 28198979

6. Hansson C, Rindler A. Periodontal conditions following surgical and orthodontic treatment of palatally impacted maxillary canines—a follow-up study. Angle Orthod. 1998;68:167–72. doi: 10.1043/0003-3219(1998)068<0167:PCFSAO>2.3.CO;2 9564427

7. Parkin NA, Milner RS, Deery C, Tinsley D, Smith AM, Germain P, et al. Periodontal health of palatally displaced canines treated with open or closed surgical technique: a multicenter, randomized controlled trial. Am J Orthod Dentofacial Orthop. 2013;144:176–84. doi: 10.1016/j.ajodo.2013.03.016 23910198

8. Shao Z, Guo X, Zhang Q, Bronkhorst EM, Zou D, Creugers NHJ. Masticatory efficiency in patients with partially dentate dentitions. J Dent. 2018;75:41–47. doi: 10.1016/j.jdent.2018.05.005 29753781

9. Kumar S, Mehrotra P, Bhagchandani J, Singh A, Garg A, Kumar S, et al. Localization of impacted canines. J Clin Diagn Res. 2015;9:ZE11–4. doi: 10.7860/JCDR/2015/10529.5480 25738100

10. Steiner C. Cephalometrics for you and me. Am J Orthod. 1953;39:729–755. doi: 10.1016/0002-9416(53)90082-7

11. Kim YH, Vietas JJ. Anteroposterior dysplasia indicator: an adjunct to cephalometric differential diagnosis. Am J Orthod.1978;73:619–33. doi: 10.1016/0002-9416(78)90223-3 276266

12. Ericson S, Kurol J. Radiographic examination of ectopically erupting maxillary canines. Am J Orthod Dentofacial Orthop. 1987;91:483–92. doi: 10.1016/0889-5406(87)90005-9 3473928

13. Crescini A, Clauser C, Giorgetti R, Cortellini P, Pini Prato GP. Tunnel traction of infraosseous impacted maxillary canines. A three-year periodontal follow-up. Am J Orthod Dentofacial Orthop. 1994;105:61–72. doi: 10.1016/S0889-5406(94)70100-8 8291494

14. McDonald F, Yap WL. The surgical exposure and application of direct traction of unerupted teeth. Am J Orthod. 1986; 89:331–40. doi: 10.1016/0002-9416(86)90056-4 3457532

15. Arriola-Guillén LE, Ruiz-Mora GA, Rodriguez-Cardenas YA, Aliaga-Del Castillo A, Boessio-Vizzotto M, Dias-Da Silveira HL. Influence of impacted maxillary canine orthodontic traction complexity on root resorption of incisors: A retrospective longitudinal study. Am J Orthod Dentofacial Orthop. 2019;155:28–39. doi: 10.1016/j.ajodo.2018.02.011 30591160

16. Arriola-Guillén LE R-MG, Rodríguez-Cárdenas YA, Aliaga-Del Castillo A, Días-Da Silveira HL. Root resorption of maxillary incisors after traction of unilateral vs bilateral impacted canines with reinforced anchorage. Am J Orthod Dentofacial Orthop. 2018;154:646–657. doi: 10.1016/j.ajodo.2018.01.015 30384935

17. American Academy of O and Maxillofacial R. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:238–57. doi: 10.1016/j.oooo.2013.06.002 23849378

18. Dóleo MF, Arriola-Guillén LE, Rodriguez-Cardenas YA, Ruiz-Mora GA. Skeletal and dentoalveolar bilateral dimensions in unilateral palatally impacted canine using cone beam computed tomography. Prog Orthod. 2017;18:7. doi: 10.1186/s40510-017-0160-6 28164257

19. Abella F, Teixido LM, Patel S, Sosa F, Duran-Sindreu F, Roig M. Cone-beam Computed Tomography Analysis of the Root Canal Morphology of Maxillary First and Second Premolars in a Spanish Population. J Endod. 2015;41:1241–7. doi: 10.1016/j.joen.2015.03.026 25956606


Článek vyšel v časopise

PLOS One


2019 Číslo 12