Lomax exponential distribution with an application to real-life data


Autoři: Muhammad Ijaz aff001;  Syed Muhammad Asim aff001;  Alamgir aff001
Působiště autorů: Department of Statistics, University of Peshawar, Peshawar, KPK, Pakistan aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225827

Souhrn

In this paper, a new modification of the Lomax distribution is considered named as Lomax exponential distribution (LE). The proposed distribution is quite flexible in modeling the lifetime data with both decreasing and increasing shapes (non-monotonic). We derive the explicit expressions for the incomplete moments, quantile function, the density function for the order statistics etc. The Renyi entropy for the proposed distribution is also obtained. Moreover, the paper discusses the estimates of the parameters by the usual maximum likelihood estimation method along with determining the information matrix. In addition, the potentiality of the proposed distribution is illustrated using two real data sets. To judge the performance of the model, the goodness of fit measures, AIC, CAIC, BIC, and HQIC are used. Form the results it is concluded that the proposed model performs better than the Lomax distribution, Weibull Lomax distribution, and exponential Lomax distribution.

Klíčová slova:

Carbon fiber – Entropy – Mathematical functions – Maximum likelihood estimation – Probability density – Probability distribution – Random variables – Reliability


Zdroje

1. Ghitany M. E., Al-Awadhi F. A., Alkhalfan L. A. Marshall–Olkin extended Lomax- distribution and its application to censored data, Communications in Statistics, Theory and Methods, 2007; 36:1855–1866.

2. Cordeiro G. M., Ortega E. M., Popovic B. V. The gamma-Lomax distribution, Journal of Statistical computation and Simulation, 2015; 85:305–319.

3. Zografos. Konstantinos., Narayanaswamy B. On families of beta-and generalized gamma-generated distributions and associated inference. Statistical Methodology, 2009; 6(4): 344–362.

4. Lemonte Artur J., Cordeiro Gauss M., Edwin M.M.O. On the additive Weibull distribution." Communications in Statistics-Theory and Methods, 2014; 43: 2066–2080.

5. Lai C. D., Min Xie., Murthy D. N. P. A modified Weibull distribution. IEEE Transactions on reliability, 2003; 52 (1): 33–37.

6. Lemonte Artur J., Gauss M. C. An extended Lomax distribution. Statistics, 2013; 47(4): 800–816.

7. Ibrahim A.B., Moniem A., Hameed A. Exponentiated Lomax distribution International, Journal of Mathematical Education. 2012; 33(5):1–7.

8. Ashour S. K., Eltehiwy M. A. Transmuted exponentiated Lomax distribution. Australian Journal of Basic and Applied Sciences, 2013; 7(7): 658–667.

9. Merovci F., Puka L. Transmuted Pareto distribution. In Prob Stat Forum, 2014; 7:1–11.

10. Khan Muhammad, S., Robert K., Hudson I. Characterizations of the transmuted inverse Weibull distribution. Anziam Journal. 2013; 55: 197–217.

11. Tahir Muhammad H., et al. The Weibull-Lomax distribution properties and applications. Hacettepe Journal of Mathematics and Statistics. 2015; 44(2): 461–480.

12. Harris C. M. The Pareto distribution as a queue service discipline. Operations Research, 1968; 16(2):307–313.

13. Atkinson A.B. and Harrison A.J. Distribution of Personal Wealth in Britain (Cambridge University Press, Cambridge, 1978).

14. Hollanh O., Golaup A. and Aghvami A.H. Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration, IEE proceedings on Communications, 2006; 135:683–690.

15. Hassan A.S. and Al-Ghamdi A.S. Optimum step stress accelerated life testing for Lomax distribution, Journal of Applied Sciences Research, 2009; 5:2153–2164.

16. Bryson M. C. Heavy-tailed distributions: properties and tests. Technometrics, 1974; 16(1):61–68.

17. Ahsanullah M. Record values of Lomax distribution, Statistica Nederlandica, 1991; 41(1): 21–29.

18. El-Bassiouny A. H., Abdo N. F., Shahen H. S. Exponential lomax distribution. International Journal of Computer Applications, 2015; 121(13).

19. Afify A. Z., Nofal Z. M., Yousof H. M., El Gebaly Y. and M.,Butt N. S. The transmuted Weibull Lomax distribution: properties and application, Pakistan Journal of Statistics and Operation Research, 2015; 11: 135–152.

20. Cordeiro G. M., Alizadeh M., Ramires T. G., and Ortega E. M. The generalized odd half-Cauchy family of distributions properties and applications, Communications in Statistics-Theory and Methods, 2017; 46: 5685–5705.

21. Abd-Elfattah A.M., Alaboud F.M. and Alharby A.H. On sample size estimation for Lomax distribution, Australian Journal of Basic and Applied Sciences, 2007; 1: 373–378.

22. Lemonte A. J., and Cordeiro G. M. An extended Lomax distribution, Statistics, 2013; 47: 800–816.

23. Ahsanullah M. Record values of Lomax distribution, Statistica Nederlandica, 1991; 41(1): 21–29.

24. Abd-Elfattah A.M., Alaboud F.M. and Alharby A.H. On sample size estimation for Lomax distribution, Australian Journal of Basic and Applied Sciences, 2007; 1:373–378.

25. Al-Zahrani B., and Sagor H. The poisson-lomax distribution. Revista Colombiana de Estadística, 2014; 37: 225–245.

26. Korkmaz M. c., and Genç A. I. A new generalized two-sided class of distributions with an emphasis on two-sided generalized normal distribution, Communications in Statistics-Simulation and Computation, 2017; 46: 1441–1460.

27. Nasir M. A., Aljarrah M., Jamal F., and Tahir M. H. A new generalized Burr family of distributions based on quantile function. Journal of Statistics Applications and Probability, 2017; 6:1–14.

28. Otunuga O. E. The Pareto-g Extended Weibull Distribution, 2017.

29. Dias C. R., Alizadeh M., and Cordeiro G. M. The beta Nadarajah-Haghighi distribution. Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, 2016.

30. El-Bassiouny A. H., Abdo N. F., and Shahen H. S. Exponential lomax distribution, International Journal of Computer Applications, 2015; 121:(13).

31. Ashour S. K., Eltehiwy M. A. Transmuted exponentiated Lomax distribution, Australian Journal of Basic and Applied Sciences, 2013; 7: 658–667.

32. Chen Feng, Chen Suren, and Ma Xiaoxiang. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of safety research, 2018; 65: 153–159. doi: 10.1016/j.jsr.2018.02.010 29776524

33. Chen Feng, and Chen Suren. Injury severities of truck drivers in single-and multi-vehicle accidents on rural highways. Accident Analysis & Prevention,2011; 43(5)): 1677–1688.

34. Chen Feng, Song Mingtao, and Ma Xiaoxiang. Investigation on the injury severity of drivers in rear-end collisions between cars using a random parameters bivariate ordered probit model. International journal of environmental research and public health; 2019; 16(14): 2632.

35. Dong Bowen, et al. "Investigating the Differences of Single-Vehicle and Multivehicle Accident Probability Using Mixed Logit Model. Journal of Advanced Transportation, 2018. doi: 10.1007/s11116-016-9747-x

36. Chen Feng, Chen Suren, and Ma Xiaoxiang. Crash frequency modeling using real-time environmental and traffic data and unbalanced panel data models. International journal of environmental research and public health, 2016; 13(6): 609.

37. Lomax K. Business failures: another example of the analysis of failure data. J Am Stat Assoc. 1987; 49: 847–852.

38. Hogg R. and Klugman S.A. Loss Distributions. New York: Wiley; 1984.


Článek vyšel v časopise

PLOS One


2019 Číslo 12