Comparison of a novel algorithm quantitatively estimating epifascial fibrosis in three-dimensional computed tomography images to other clinical lymphedema grading methods


Autoři: Kyo-in Koo aff001;  Myoung-Hwan Ko aff002;  Yongkwan Lee aff001;  Hye Won Son aff001;  Suwon Lee aff001;  Chang Ho Hwang aff001
Působiště autorů: Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea aff001;  Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk, Repub aff002;  Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224457

Souhrn

No method has yet been approved for detecting lymphedema fibrosis before its progression. This study assessed the feasibility of computed tomography-based estimation of fibrosis. This observational, cross-sectional study included patients with lymphedema affecting one limb. Three types (maximum, mean, minimum) of computed tomography reticulation indexes were digitally calculated from trans-axial images using absorptive values, and the computed tomography reticulation indexes compared with clinical scales and measurements. Of 326 patients evaluated by at least one of lymphoscintigraphy, bio-electrical impedance, and computed tomography, 24 were evaluated by all three. The mean number of computed tomography scans in these patients was 109. Sixteen patients had breast cancer, seven had gynecologic cancers, and one had primary lymphedema. Mean computed tomography reticulation index (r = 0.52, p < 0.01) and maximal computed tomography reticulation index (r = 0.45, p < 0.05) were significantly associated with time from initial limb swelling to computed tomography. Mean computed tomography reticulation index (r = 0.86, p < 0.01), minimal computed tomography reticulation index (r = 0.79, p < 0.01), and maximal computed tomography reticulation index (r = 0.68, p < 0.01) were significantly associated with International Society of Lymphedema substage. Minimal computed tomography reticulation index correlated with 1-kHz-based bio-electrical impedance ratio (r = -0.46, p < 0.05) and with standardized proximal limb circumference difference ratio (r = 0.45, p < 0.05) of both limbs. Maximal computed tomography reticulation index had a sensitivity of 0.78, specificity of 0.60, and areas under the curve of 0.66 in detecting lymphoscintigraphic stage IV. The algorithm utilizing three-dimensional computed tomography images of epifascial fibrosis may be used as a marker for lymphedema duration, limb swelling, International Society of Lymphedema substage, and interstitial lymphatic fluids of lymphedema. The current approach shows promise in providing an additional method to assist in characterizing and monitoring lymphedema patients.

Klíčová slova:

Body limbs – Computed axial tomography – Fibrosis – Lymph nodes – Lymphatic system – Surgical and invasive medical procedures – Surgical oncology – Lymphedema


Zdroje

1. Spector ME, Gallagher KK, McHugh JB, Mukherji SK. Correlation of radiographic and pathologic findings of dermal lymphatic invasion in head and neck squamous cell carcinoma. AJNR American journal of neuroradiology. 2012;33(3):462–4. Epub 2011/11/26. doi: 10.3174/ajnr.A2822 22116117; PubMed Central PMCID: PMC3606558.

2. Wang J, Iranmanesh AM, Oates ME. Skeletal Scintigraphy in Radiation-Induced Fibrosis With Lymphedema. Clinical nuclear medicine. 2017;42(3):231–4. Epub 2016/12/30. doi: 10.1097/RLU.0000000000001525 28033224.

3. Deura I, Shimada M, Hirashita K, Sugimura M, Sato S, Sato S, et al. Incidence and risk factors for lower limb lymphedema after gynecologic cancer surgery with initiation of periodic complex decongestive physiotherapy. International journal of clinical oncology. 2015;20(3):556–60. Epub 2014/07/06. doi: 10.1007/s10147-014-0724-0 24993674.

4. Yost KJ, Cheville AL, Al-Hilli MM, Mariani A, Barrette BA, McGree ME, et al. Lymphedema after surgery for endometrial cancer: prevalence, risk factors, and quality of life. Obstetrics and gynecology. 2014;124(2 Pt 1):307–15. Epub 2014/07/09. doi: 10.1097/aog.0000000000000372 25004343; PubMed Central PMCID: PMC4269467.

5. O'Toole J, Jammallo LS, Miller CL, Skolny MN, Specht MC, Taghian AG. Screening for breast cancer-related lymphedema: the need for standardization. The oncologist. 2013;18(4):350–2. Epub 2013/04/12. doi: 10.1634/theoncologist.2012-0387 23576481; PubMed Central PMCID: PMC3639519.

6. Sisman H, Sahin B, Duman BB, Tanriverdi G. Nurse-assisted education and exercise decrease the prevalence and morbidity of lymphedema following breast cancer surgery. Journal of BUON: official journal of the Balkan Union of Oncology. 2012;17(3):565–9. Epub 2012/10/04. 23033300.

7. Rasmusson E, Gunnlaugsson A, Blom R, Bjork-Eriksson T, Nilsson P, Ahlgen G, et al. Low rate of lymphedema after extended pelvic lymphadenectomy followed by pelvic irradiation of node-positive prostate cancer. Radiation oncology (London, England). 2013;8:271. Epub 2013/11/21. doi: 10.1186/1748-717x-8-271 24252686; PubMed Central PMCID: PMC3842657.

8. Cormier JN, Xing Y, Zaniletti I, Askew RL, Stewart BR, Armer JM. Minimal limb volume change has a significant impact on breast cancer survivors. Lymphology. 2009;42(4):161–75. Epub 2010/03/12. 20218084; PubMed Central PMCID: PMC2882028.

9. Yoo JS, Chung SH, Lim MC. Computed tomography-based quantitative assessment of lower extremity lymphedema following treatment for gynecologic cancer. 2017;28(2):e18. doi: 10.3802/jgo.2017.28.e18 28028991.

10. Rockson SG. The lymphatics and the inflammatory response: lessons learned from human lymphedema. Lymphatic research and biology. 2013;11(3):117–20. Epub 2013/09/13. doi: 10.1089/lrb.2013.1132 24024576; PubMed Central PMCID: PMC3780325.

11. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946–53. Epub 2005/12/16. doi: 10.1038/nature04480 16355212.

12. Gamba JL, Silverman PM, Ling D, Dunnick NR, Korobkin M. Primary lower extremity lymphedema: CT diagnosis. Radiology. 1983;149(1):218. Epub 1983/10/01. doi: 10.1148/radiology.149.1.6611927 6611927.

13. Monnin-Delhom ED, Gallix BP, Achard C, Bruel JM, Janbon C. High resolution unenhanced computed tomography in patients with swollen legs. Lymphology. 2002;35(3):121–8. Epub 2002/10/05. 12363222.

14. Vaughan BF. CT of swollen legs. Clinical radiology. 1990;41(1):24–30. Epub 1990/01/01. doi: 10.1016/s0009-9260(05)80927-4 2297962.

15. Monnin-Delhom E ME, Bruel IM. Predictive CT criteria of response to lymphatic draingage in lymphedema of the lower limbs. Lymphology. 1998;31 (suppl):330–4.

16. Tenenbaum A, Brorson H, Johansson E, Perbeck L, Steen-Zupanc U. [Lower risk of fat formation and fibrosis if lymphedema is treated in time]. Lakartidningen. 2005;102(32–33):2220–5. Epub 2005/09/09. 16145880.

17. Hounsfield GN. Computed medical imaging. Science (New York, NY). 1980;210(4465):22–8. Epub 1980/10/03. doi: 10.1126/science.6997993 6997993.

18. Murdaca G, Cagnati P, Gulli R, Spano F, Puppo F, Campisi C, et al. Current views on diagnostic approach and treatment of lymphedema. The American journal of medicine. 2012;125(2):134–40. Epub 2012/01/25. doi: 10.1016/j.amjmed.2011.06.032 22269614.

19. Pecking AP, Alberini JL, Wartski M, Edeline V, Cluzan RV. Relationship between lymphoscintigraphy and clinical findings in lower limb lymphedema (LO): toward a comprehensive staging. Lymphology. 2008;41(1):1–10. Epub 2008/06/28. 18581953.

20. Suami H, Pan WR, Taylor GI. Changes in the lymph structure of the upper limb after axillary dissection: radiographic and anatomical study in a human cadaver. Plastic and reconstructive surgery. 2007;120(4):982–91. Epub 2007/09/07. doi: 10.1097/01.prs.0000277995.25009.3e 17805128.

21. Szuba A, Shin WS, Strauss HW, Rockson S. The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2003;44(1):43–57. Epub 2003/01/08. 12515876.

22. Sun D, Yu Z, Chen J, Wang L, Han L, Liu N. The Value of Using a SkinFibroMeter for Diagnosis and Assessment of Secondary Lymphedema and Associated Fibrosis of Lower Limb Skin. Lymphatic research and biology. 2017;15(1):70–6. Epub 2017/03/10. doi: 10.1089/lrb.2016.0029 28277926.

23. Geyer MJ, Brienza DM, Chib V, Wang J. Quantifying fibrosis in venous disease: mechanical properties of lipodermatosclerotic and healthy tissue. Advances in skin & wound care. 2004;17(3):131–42. Epub 2004/06/15. doi: 10.1097/00129334-200404000-00014 15194975.

24. Suehiro K, Morikage N, Murakami M, Yamashita O, Samura M, Hamano K. Significance of ultrasound examination of skin and subcutaneous tissue in secondary lower extremity lymphedema. Annals of vascular diseases. 2013;6(2):180–8. Epub 2013/07/05. doi: 10.3400/avd.oa.12.00102 23825499; PubMed Central PMCID: PMC3692988.

25. Kim SY, Bae H, Ji HM. Computed Tomography as an Objective Measurement Tool for Secondary Lymphedema Treated With Extracorporeal Shock Wave Therapy. Annals of rehabilitation medicine. 2015;39(3):488–93. Epub 2015/07/15. doi: 10.5535/arm.2015.39.3.488 26161357; PubMed Central PMCID: PMC4496522.

26. Tashiro K, Feng J, Wu SH, Mashiko T, Kanayama K, Narushima M, et al. Pathological changes of adipose tissue in secondary lymphoedema. The British journal of dermatology. 2017;177(1):158–67. Epub 2016/12/22. doi: 10.1111/bjd.15238 28000916.

27. Markhus CE, Karlsen TV, Wagner M, Svendsen OS, Tenstad O, Alitalo K, et al. Increased interstitial protein because of impaired lymph drainage does not induce fibrosis and inflammation in lymphedema. Arteriosclerosis, thrombosis, and vascular biology. 2013;33(2):266–74. Epub 2013/01/05. doi: 10.1161/ATVBAHA.112.300384 23288156.

28. Edmunds K, Gislason M, Sigurethsson S, Guethnason V, Harris T, Carraro U, et al. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PloS one. 2018;13(3):e0193241. Epub 2018/03/08. doi: 10.1371/journal.pone.0193241 29513690; PubMed Central PMCID: PMC5841751.

29. Balzarini A, Milella M, Civelli E, Sigari C, De Conno F. Ultrasonography of arm edema after axillary dissection for breast cancer: a preliminary study. Lymphology. 2001;34(4):152–5. Epub 2002/01/11. 11783592.

30. van Zanten M, Piller N, Ward LC. Inter-Changeability of Impedance Devices for Lymphedema Assessment. Lymphatic research and biology. 2016;14(2):88–94. Epub 2015/11/18. doi: 10.1089/lrb.2015.0026 26574711.

31. Gaw R, Box R, Cornish B. Bioimpedance in the assessment of unilateral lymphedema of a limb: the optimal frequency. Lymphatic research and biology. 2011;9(2):93–9. Epub 2011/06/22. doi: 10.1089/lrb.2010.0020 21688978.

32. Haaverstad R, Nilsen G, Myhre HO, Saether OD, Rinck PA. The use of MRI in the investigation of leg oedema. European journal of vascular surgery. 1992;6(2):124–9. Epub 1992/03/01. doi: 10.1016/s0950-821x(05)80228-2 1572451.

33. Kim P, Lee JK. Quantitative Lymphoscintigraphy to Predict the Possibility of Lymphedema Development After Breast Cancer Surgery: Retrospective Clinical Study. 2017;41(6):1065–75. doi: 10.5535/arm.2017.41.6.1065 29354584.

34. Oliveira MMF, Gurgel MSC, Amorim BJ, Ramos CD, Derchain S, Furlan-Santos N, et al. Long term effects of manual lymphatic drainage and active exercises on physical morbidities, lymphoscintigraphy parameters and lymphedema formation in patients operated due to breast cancer: A clinical trial. PloS one. 2018;13(1):e0189176. Epub 2018/01/06. doi: 10.1371/journal.pone.0189176 29304140; PubMed Central PMCID: PMC5755747.

35. Brautigam P, Foldi E, Schaiper I, Krause T, Vanscheidt W, Moser E. Analysis of lymphatic drainage in various forms of leg edema using two compartment lymphoscintigraphy. Lymphology. 1998;31(2):43–55. Epub 1998/07/17. 9664268.

36. Pavlista D, Eliska O. [Lymphatic mapping in axilla as possible prevention of lymphedema in breast cancer patients—first results of the anatomical study]. Ceska gynekologie. 2012;77(3):251–4. Epub 2012/07/12. 22779729.

37. Rockson SG. The unique biology of lymphatic edema. Lymphatic research and biology. 2009;7(2):97–100. Epub 2009/06/16. doi: 10.1089/lrb.2009.7202 19522679.

38. Kosir MA, Rymal C, Koppolu P, Hryniuk L, Darga L, Du W, et al. Surgical outcomes after breast cancer surgery: measuring acute lymphedema. The Journal of surgical research. 2001;95(2):147–51. Epub 2001/02/13. doi: 10.1006/jsre.2000.6021 11162038.

39. Ohzeki T, Hanaki K, Tsukuda T, Urashima H, Ohtahara H, Tanaka Y, et al. Fat areas on the extremities in normal weight and overweight children and adolescents: Comparison between age-related and weight-related changes in adiposity. American journal of human biology: the official journal of the Human Biology Council. 1996;8(4):427–31. Epub 1996/01/01. doi: 10.1002/(sici)1520-6300(1996)8:4<427::aid-ajhb2>3.0.co;2-v 28557073.

40. Kim M, Suh DH, Yang EJ, Lim MC, Choi JY, Kim K, et al. Identifying risk factors for occult lower extremity lymphedema using computed tomography in patients undergoing lymphadenectomy for gynecologic cancers. Gynecologic oncology. 2017;144(1):153–8. Epub 2017/01/18. doi: 10.1016/j.ygyno.2016.10.037 28094037.

41. Hattori K, Numata N, Ikoma M, Matsuzaka A, Danielson RR. Sex differences in the distribution of subcutaneous and internal fat. Human biology. 1991;63(1):53–63. Epub 1991/02/01. 2004744.

42. Brorson H, Ohlin K, Olsson G, Karlsson MK. Breast cancer-related chronic arm lymphedema is associated with excess adipose and muscle tissue. Lymphatic research and biology. 2009;7(1):3–10. Epub 2009/02/24. doi: 10.1089/lrb.2008.1022 19231988.

43. Scherr MK, Peschel O, Grimm JM, Ziegeler E, Uhl M, Geyer LL, et al. Low-dose CT in body-packers: delineation of body packs and radiation dose in a porcine model. Forensic science, medicine, and pathology. 2014;10(2):170–8. Epub 2014/01/21. doi: 10.1007/s12024-013-9522-7 24443143.

44. Murphy KP, McLaughlin PD, Twomey M, Chan VE, Moloney F, Fung AJ, et al. Accurate tissue characterization in low-dose CT imaging with pure iterative reconstruction. Journal of medical imaging and radiation oncology. 2017;61(2):190–6. Epub 2016/10/16. doi: 10.1111/1754-9485.12546 27739229.

45. Savetsky IL, Torrisi JS, Cuzzone DA, Ghanta S, Albano NJ, Gardenier JC, et al. Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema. American journal of physiology Heart and circulatory physiology. 2014;307(2):H165–72. Epub 2014/05/27. doi: 10.1152/ajpheart.00244.2014 24858842; PubMed Central PMCID: PMC4101643.


Článek vyšel v časopise

PLOS One


2019 Číslo 12