Women with metabolic syndrome show similar health benefits from high-intensity interval training than men


Autoři: Valle Guio de Prada aff001;  Juan Fernando Ortega aff002;  Felix Morales-Palomo aff002;  Miguel Ramirez-Jimenez aff002;  Alfonso Moreno-Cabañas aff002;  Ricardo Mora-Rodriguez aff002
Působiště autorů: Sports Medicine Center, Diputacion de Toledo, Toledo, Spain aff001;  Exercise Physiology Laboratory, University of Castilla-La Mancha, Toledo, Spain aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225893

Souhrn

High-intensity interval training (HIIT), is effective to improve cardiorespiratory fitness (CRF) and metabolic syndrome (MetS) components in adults. However, it is unclear if CRF and MetS components respond similarly in men and women after HIIT. For 16 weeks, 63 women (53±7 years) and 56 men (55±8 years) with MetS underwent a three day/week HIIT program. Bodyweight and composition, VO2MAX, surrogate parameters of CRF (Ventilatory threshold (VT), oxygen uptake efficiency slope (OUES) and VE/VCO2 slope), maximal rate of fat oxidation (MFO), and MetS components were assessed before and after training. All reported variables were analyzed by split-plot ANOVA looking for time by sex interactions. Before training men had higher absolute values of VO2MAX (58.6%), and MFO (24.6%), while lower body fat mass (10.5%) than women (all P<0.05). After normalization by fat-free mass (FFM), VO2MAX remained 16.6% higher in men (P<0.05), whereas differences in MFO disappeared (P = 0.292). After intervention VO2MAX (P<0.001), VO2 at VT (P<0.001), OUES (P<0.001), and VE/VCO2 slope (P<0.001) increased without differences by sex (P>0.05). After training MetS Z-score (P<0.001) improved without differences between men and women (P>0.05). From the MetS components, only blood pressure (P<0.001) and waist circumference (P<0.001) improved across time, without differences by sex. In both, women and men, changes in OUES (r = 0.685 and r = 0.445, respectively), and VO2 at VT (r = 0.378, and r = 0.445, respectively), correlated with VO2MAX. While only bodyweight changes correlated with MetS Z-score changes (r = 0.372, and = 0.300, respectively). Despite baseline differences, 16-weeks of HIIT similarly improved MetS, cardiorespiratory and metabolic fitness in women and men with MetS. This suggests that there are no restrictions due to sex on the benefits derived from an intense exercise program in the health of MetS participants.

Trial Registration: clinicaltrials.gov NCT03019796

Klíčová slova:

Blood pressure – Body weight – Exercise – Fats – Metabolic syndrome – Mitochondria – Oxidation – Oxygen


Zdroje

1. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care. 2011;34(1):216–9. doi: 10.2337/dc10-0879 20889854.

2. Mora-Rodriguez R, Ortega JF, Hamouti N, Fernandez-Elias VE, Canete Garcia-Prieto J, Guadalupe-Grau A, et al. Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2014;24(7):792–8. doi: 10.1016/j.numecd.2014.01.011 24656853.

3. Morita N, Okita K. Is gender a factor in the reduction of cardiovascular risks with exercise training? Circ J. 2013;77(3):646–51. doi: 10.1253/circj.cj-12-0607 23220798.

4. Katzmarzyk PT, Leon AS, Wilmore JH, Skinner JS, Rao DC, Rankinen T, et al. Targeting the metabolic syndrome with exercise: evidence from the HERITAGE Family Study. Med Sci Sports Exerc. 2003;35(10):1703–9. doi: 10.1249/01.MSS.0000089337.73244.9B 14523308.

5. Lakka TA, Laaksonen DE, Lakka HM, Mannikko N, Niskanen LK, Rauramaa R, et al. Sedentary lifestyle, poor cardiorespiratory fitness, and the metabolic syndrome. Med Sci Sports Exerc. 2003;35(8):1279–86. doi: 10.1249/01.MSS.0000079076.74931.9A 12900679.

6. Hassinen M, Lakka TA, Savonen K, Litmanen H, Kiviaho L, Laaksonen DE, et al. Cardiorespiratory fitness as a feature of metabolic syndrome in older men and women: the Dose-Responses to Exercise Training study (DR’s EXTRA). Diabetes care. 2008;31(6):1242–7. doi: 10.2337/dc07-2298 18332159.

7. Hossack KF, Bruce RA. Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(4):799–804. doi: 10.1152/jappl.1982.53.4.799 7153117.

8. Astrand I. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand Suppl. 1960;49(169):1–92. 13794892.

9. Martin WH 3rd, Ogawa T, Kohrt WM, Malley MT, Korte E, Kieffer PS, et al. Effects of aging, gender, and physical training on peripheral vascular function. Circulation. 1991;84(2):654–64. doi: 10.1161/01.cir.84.2.654 1860209.

10. Skinner JS, Jaskolski A, Jaskolska A, Krasnoff J, Gagnon J, Leon AS, et al. Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study. Journal of applied physiology. 2001;90(5):1770–6. doi: 10.1152/jappl.2001.90.5.1770 11299267.

11. Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494–503. doi: 10.1161/01.cir.86.2.494 1638717.

12. Franks PW, Ekelund U, Brage S, Wong MY, Wareham NJ. Does the association of habitual physical activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabetes care. 2004;27(5):1187–93. doi: 10.2337/diacare.27.5.1187 15111543.

13. Woo JS, Derleth C, Stratton JR, Levy WC. The influence of age, gender, and training on exercise efficiency. J Am Coll Cardiol. 2006;47(5):1049–57. doi: 10.1016/j.jacc.2005.09.066 16516092.

14. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. doi: 10.1249/MSS.0b013e318213fefb 21694556.

15. Howden EJ, Perhonen M, Peshock RM, Zhang R, Arbab-Zadeh A, Adams-Huet B, et al. Females have a blunted cardiovascular response to one year of intensive supervised endurance training. Journal of applied physiology. 2015;119(1):37–46. doi: 10.1152/japplphysiol.00092.2015 25930024.

16. Astorino TA, Allen RP, Roberson DW, Jurancich M, Lewis R, McCarthy K, et al. Adaptations to high-intensity training are independent of gender. European journal of applied physiology. 2011;111(7):1279–86. doi: 10.1007/s00421-010-1741-y 21132441.

17. Metcalfe RS, Tardif N, Thompson D, Vollaard NB. Changes in aerobic capacity and glycaemic control in response to reduced-exertion high-intensity interval training (REHIT) are not different between sedentary men and women. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2016;41(11):1117–23. doi: 10.1139/apnm-2016-0253 27753506.

18. Baba R, Nagashima M, Goto M, Nagano Y, Yokota M, Tauchi N, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996;28(6):1567–72. doi: 10.1016/s0735-1097(96)00412-3 8917273.

19. Meyer T, Lucia A, Earnest CP, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters—theory and application. International journal of sports medicine. 2005;26 Suppl 1:S38–48. doi: 10.1055/s-2004-830514 15702455.

20. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. The American review of respiratory disease. 1984;129(2 Pt 2):S49–55. doi: 10.1164/arrd.1984.129.2P2.S49 6421218.

21. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation. 2016;133(24):e694–711. doi: 10.1161/CIR.0000000000000406 27143685.

22. Arena R, Humphrey R. Relationship between ventilatory expired gas and cardiac parameters during symptom-limited exercise testing in patients with heart failure. J Cardiopulm Rehabil. 2001;21(3):130–4. doi: 10.1097/00008483-200105000-00002 11409221.

23. Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol. 2018;9:599. doi: 10.3389/fphys.2018.00599 29875697.

24. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current biology: CB. 2006;16(14):R551–60. doi: 10.1016/j.cub.2006.06.054 16860735.

25. Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Comprehensive Physiology. 2011;1(2):921–40. doi: 10.1002/cphy.c100052 23737207.

26. Wu YT, Wu SB, Wei YH. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Current pharmaceutical design. 2014;20(35):5510–26. doi: 10.2174/1381612820666140306103401 24606797.

27. Wang CH, Wang CC, Wei YH. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann N Y Acad Sci. 2010;1201:157–65. doi: 10.1111/j.1749-6632.2010.05625.x 20649552.

28. Haufe S, Engeli S, Budziarek P, Utz W, Schulz-Menger J, Hermsdorf M, et al. Determinants of exercise-induced fat oxidation in obese women and men. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2010;42(3):215–21. doi: 10.1055/s-0029-1242745 19937568.

29. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. Journal of applied physiology. 2005;98(1):160–7. doi: 10.1152/japplphysiol.00662.2003 15333616.

30. Astorino TA, Edmunds RM, Clark A, Gallant R, King L, Ordille GM, et al. Change in maximal fat oxidation in response to different regimes of periodized high-intensity interval training (HIIT). European journal of applied physiology. 2017;117(4):745–55. doi: 10.1007/s00421-017-3535-y 28251399.

31. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644 19805654.

32. Taylor KL, Weston M, Batterham AM. Evaluating intervention fidelity: an example from a high-intensity interval training study. PloS one. 2015;10(4):e0125166. doi: 10.1371/journal.pone.0125166 25902066.

33. Dandanell S, Praest CB, Sondergard SD, Skovborg C, Dela F, Larsen S, et al. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2017;42(4):405–12. doi: 10.1139/apnm-2016-0518 28177732.

34. Sue DY, Wasserman K, Moricca RB, Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988;94(5):931–8. doi: 10.1378/chest.94.5.931 3180897.

35. Anaya SA, Church TS, Blair SN, Myers JN, Earnest CP. Exercise dose-response of the V(E)/VCO(2) slope in postmenopausal women in the DREW study. Med Sci Sports Exerc. 2009;41(5):971–6. doi: 10.1249/MSS.0b013e3181930009 19346992.

36. Poole DC, Jones AM. Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. J Appl Physiol (1985). 2017;122(4):997–1002. doi: 10.1152/japplphysiol.01063.2016 28153947.

37. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of applied physiology: respiratory, environmental and exercise physiology. 1983;55(2):628–34. doi: 10.1152/jappl.1983.55.2.628 6618956.

38. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26 Suppl 1:S28–37. Epub 2005/02/11. doi: 10.1055/s-2004-830512 15702454.

39. Mora-Rodriguez R, Ortega JF, Guio de Prada V, Fernandez-Elias VE, Hamouti N, Morales-Palomo F, et al. Effects of Simultaneous or Sequential Weight Loss Diet and Aerobic Interval Training on Metabolic Syndrome. Int J Sports Med. 2015. Epub 2015/12/17. doi: 10.1055/s-0035-1564259 26667921.

40. Brage S, Wedderkopp N, Ekelund U, Franks PW, Wareham NJ, Andersen LB, et al. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: the European Youth Heart Study (EYHS). Diabetes care. 2004;27(9):2141–8. doi: 10.2337/diacare.27.9.2141 15333475.

41. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. doi: 10.3389/fpsyg.2013.00863 24324449.

42. Arena R, Myers J, Abella J, Pinkstaff S, Brubaker P, Moore B, et al. Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. Circ Heart Fail. 2009;2(2):113–20. doi: 10.1161/CIRCHEARTFAILURE.108.834168 19808326.

43. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74. doi: 10.1161/CIR.0b013e31826fb946 22952317.

44. Lepretre PM, Vogel T, Brechat PH, Dufour S, Richard R, Kaltenbach G, et al. Impact of short-term aerobic interval training on maximal exercise in sedentary aged subjects. International journal of clinical practice. 2009;63(10):1472–8. doi: 10.1111/j.1742-1241.2009.02120.x 19769704.

45. Dalleck LC, Astorino TA, Erickson RM, McCarthy CM, Beadell AA, Botten BH. Suitability of verification testing to confirm attainment of VO(2)max in middle-aged and older adults. Research in sports medicine. 2012;20(2):118–28. doi: 10.1080/15438627.2012.660825 22458828.

46. Astorino TA, deRevere J, Anderson T, Kellogg E, Holstrom P, Ring S, et al. Change in VO2max and time trial performance in response to high-intensity interval training prescribed using ventilatory threshold. European journal of applied physiology. 2018;118(9):1811–20. doi: 10.1007/s00421-018-3910-3 29923111.

47. San-Millan I, Brooks GA. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports medicine. 2017. doi: 10.1007/s40279-017-0751-x 28623613.

48. Onofre T, Oliver N, Carlos R, Felismino A, Corte RC, Silva E, et al. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women. PLoS One. 2017;12(4):e0172894. doi: 10.1371/journal.pone.0172894 28384329.

49. Gademan MG, Swenne CA, Verwey HF, van de Vooren H, Haest JC, van Exel HJ, et al. Exercise training increases oxygen uptake efficiency slope in chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2008;15(2):140–4. doi: 10.1097/HJR.0b013e3282ef19986 18391638.

50. Van Laethem C, Van De Veire N, De Backer G, Bihija S, Seghers T, Cambier D, et al. Response of the oxygen uptake efficiency slope to exercise training in patients with chronic heart failure. Eur J Heart Fail. 2007;9(6–7):625–9. doi: 10.1016/j.ejheart.2007.01.007 17347033.

51. Kemps HM, de Vries WR, Schmikli SL, Zonderland ML, Hoogeveen AR, Thijssen EJ, et al. Assessment of the effects of physical training in patients with chronic heart failure: the utility of effort-independent exercise variables. Eur J Appl Physiol. 2010;108(3):469–76. doi: 10.1007/s00421-009-1230-3 19834732.

52. Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8. doi: 10.1164/rccm.2202033 12450934.

53. Poggio R, Arazi HC, Giorgi M, Miriuka SG. Prediction of severe cardiovascular events by VE/VCO2 slope versus peak VO2 in systolic heart failure: a meta-analysis of the published literature. Am Heart J. 2010;160(6):1004–14. doi: 10.1016/j.ahj.2010.08.037 21146651.

54. Keller-Ross ML, Chantigian DP, Evanoff N, Bantle AE, Dengel DR, Chow LS. VE/VCO2 slope in lean and overweight women and its relationship to lean leg mass. International journal of cardiology Heart & vasculature. 2018;21:107–10. doi: 10.1016/j.ijcha.2018.10.009 30426069.

55. Guio de Prada V, Ortega JF, Ramirez-Jimenez M, Morales-Palomo F, Pallares JG, Mora-Rodriguez R. Training intensity relative to ventilatory thresholds determines cardiorespiratory fitness improvements in sedentary adults with obesity. European journal of sport science. 2019;19(4):549–56. doi: 10.1080/17461391.2018.1540659 30381027.

56. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8. 6373687.

57. Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. The American journal of physiology. 1993;265(5 Pt 1):E708–14. 8238496.

58. Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. The American journal of physiology. 1999;277(6 Pt 1):E1130–41. 10600804.

59. Tarnopolsky MA. Gender differences in substrate metabolism during endurance exercise. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee. 2000;25(4):312–27. 10953068.

60. Spina RJ, Ogawa T, Martin WH 3rd, Coggan AR, Holloszy JO, Ehsani AA. Exercise training prevents decline in stroke volume during exercise in young healthy subjects. J Appl Physiol (1985). 1992;72(6):2458–62. doi: 10.1152/jappl.1992.72.6.2458 1385806.

61. Okura T, Nakata Y, Ohkawara K, Numao S, Katayama Y, Matsuo T, et al. Effects of aerobic exercise on metabolic syndrome improvement in response to weight reduction. Obesity (Silver Spring). 2007;15(10):2478–84. doi: 10.1038/oby.2007.294 17925474.

62. Mora-Rodriguez R, Ortega JF, Ramirez-Jimenez M, Moreno-Cabanas A, Morales-Palomo F. Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes & metabolism. 2019. doi: 10.1016/j.diabet.2019.05.004 31158474.


Článek vyšel v časopise

PLOS One


2019 Číslo 12