Non-spherical particles in optical tweezers: A numerical solution

Autoři: Joonas Herranen aff001;  Johannes Markkanen aff002;  Gorden Videen aff003;  Karri Muinonen aff001
Působiště autorů: Department of Physics, University of Helsinki, Finland aff001;  Max Planck Institute for Solar System Research, Göttingen, Germany aff002;  Army Research Laboratory, Adelphi, Maryland, United States of America aff003;  Space Science Institute, Boulder, Colorado, United States of America aff004;  Kyung Hee University, Gyeonggi-do, South Korea aff005;  Finnish Geospatial Research Institute FGI, National Land Survey, Finland aff006
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225773


We present numerical methods for modeling the dynamics of arbitrarily shaped particles trapped within optical tweezers, which improve the predictive power of numerical simulations for practical use. We study the dependence of trapping on the shape and size of particles in a single continuous wave beam setup. We also consider the implications of different particle compositions, beam types and media. The major result of the study is that for different irregular particle shapes, a range of beam powers generally leads to trapping. The trapping power range depends on whether the particle can be characterized as elongated or flattened, and the range is also limited by Brownian forces.

Klíčová slova:

Ellipsoids – Inertia – Optical materials – Velocity – Drag – Brownian motion – Moment of inertia – Particle spin


1. Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure. Phys Rev Lett. 1970;24:156–159. doi: 10.1103/PhysRevLett.24.156

2. Gong Z, Pan YL, Videen G, Wang C. Optical trapping and manipulation of single particles in air: Principles, technical details, and applications. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018;214:94–119.

3. Ling L, Zhou F, Huang L, Li ZY. Optical forces on arbitrary shaped particles in optical tweezers. Journal of Applied Physics. 2010;108(7):073110. doi: 10.1063/1.3484045

4. Callegari A, Mijalkov M, Gököz AB, Volpe G. Computational toolbox for optical tweezers in geometrical optics. J Opt Soc Am B. 2015;32(5):B11–B19. doi: 10.1364/JOSAB.32.000B11

5. Nieminen TA, du Preez-Wilkinson N, Stilgoe AB, Loke VLY, Bui AAM, Rubinsztein-Dunlop H. Optical tweezers: Theory and modelling. Journal of Quantitative Spectroscopy and Radiative Transfer. 2014;146:59–80. doi: 10.1016/j.jqsrt.2014.04.003

6. Bui AAM, Stilgoe AB, Lenton ICD, Gibson LJ, Kashchuk AV, Zhang S, et al. Theory and practice of simulation of optical tweezers. Journal of Quantitative Spectroscopy and Radiative Transfer. 2017;195:66–75.

7. Herranen J, Markkanen J, Muinonen K. Dynamics of small particles in electromagnetic radiation fields: A numerical solution. Radio Science. 2017;52:1016. doi: 10.1002/2017RS006333

8. Herranen J, Markkanen J, Muinonen K. Polarized scattering by Gaussian random particles under radiative torques. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018;205:40–49. doi: 10.1016/j.jqsrt.2017.09.033

9. Waterman PC. Matrix formulation of electromagnetic scattering. Proceedings of the IEEE. 1965;53(87):805–812. doi: 10.1109/PROC.1965.4058

10. Markkanen J, Yuffa A. Fast superposition T-matrix solution for clusters with arbitrary-shaped constituent particles. Journal of Quantitative Spectroscopy & Radiative Transfer. 2017;189:181–188. doi: 10.1016/j.jqsrt.2016.11.004

11. Wang C, Gong Z, Pan YL, Videen G. Laser pushing or pulling of absorbing airborne particles. Applied Physics Letters. 2016;109(1).

12. Muinonen K, Pieniluoma T. Light scattering by Gaussian random ellipsoid particles: First results with discrete-dipole approximation. Journal of Quantitative Spectroscopy & Radiative Transfer. 2011;112(11):1747–1752. doi: 10.1016/j.jqsrt.2011.02.013

13. Ambrosio LA, Gouesbet G. On localized approximations for Laguerre-Gauss beams focused by a lens. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018;218:100–114.

14. Nieminen TA, Loke VLY, Stilgoe AB, Knöner G, Branczyk AM, Heckenberg R, et al. Optical tweezers computational toolbox. Journal of Optics A. 2007;9(8):S196. doi: 10.1088/1464-4258/9/8/S12

15. Siegman AE. Lasers. Mill Valley, CA: University Science Books; 1986.

16. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189. doi: 10.1103/physreva.45.8185 9906912

17. Yu X, Jiang Y, Chen H, Liu S, Lin Z. Approach to fully decomposing an optical force into conservative and nonconservative components. Phys Rev A. 2019;100:033821. doi: 10.1103/PhysRevA.100.033821

18. Foo JJ, Liu KK, Chan V. Viscous drag of deformed vesicles in optical trap: Experiments and simulations. AIChE Journal. 2004;50(1):249–254. doi: 10.1002/aic.10023

19. Dao M, Lim CT, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids. 2003;51(11):2259–2280.

20. Rancourt-Grenier S, Wei MT, Bai JJ, Chiou A, Bareil PP, Duval PL, et al. Dynamic deformation of red blood cell in Dual-trap Optical Tweezers. Opt Express. 2010;18(10):10462–10472. doi: 10.1364/OE.18.010462 20588900

21. Bou-Rabee N, Marsden JE. Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties. Found Comput Math. 2009;9(2):197–219. doi: 10.1007/s10208-008-9030-4

22. Maxwell JC. A Treatise on Electricity and Magnetism. vol. 1-2. Oxford University; 1873.

23. Poynting JH. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light. Proc R Soc Lond A. 1909;82(557). doi: 10.1098/rspa.1909.0060

24. Farsund Ø, Felderhof BU. Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field. Physica A: Statistical Mechanics and its Applications. 1996;227(1-2):108–130. doi: 10.1016/0378-4371(96)00009-X

25. Crichton JM, Marston PM. The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation. Electron J Diff Eqns, Conf. 2000;4:37–50.

26. Dennis SCR, Singh SN, Ingham DB. The steady flow due to a rotating sphere at low and moderate Reynolds numbers. Journal of Fluid Mechanics. 1980;101(2):257–279. doi: 10.1017/S0022112080001656

27. Faxén H. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Annalen der Physik. 1922;373(10):89–119. doi: 10.1002/andp.19223731003

28. Rubinow SI, Keller JB. The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics. 1961;11:447–459. doi: 10.1017/S0022112061000640

29. Volpe G, Volpe G. Simulation of a Brownian particle in an optical trap. American Journal of Physics. 2013;81(3):224–230. doi: 10.1119/1.4772632

30. Li T, Kheifets S, Medellin D, Raizen MG. Measurement of the Instantaneous Velocity of a Brownian Particle. Science. 2010;328(5986):1673–1675. doi: 10.1126/science.1189403 20488989

31. Zhang Y, Dou X, Dai Y, Wang X, Min C, Yuan X. All-optical manipulation of micrometer-sized metallic particles. Photon Res. 2018;6(2):66–71. doi: 10.1364/PRJ.6.000066

32. Lin J, Li Yq. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam. Applied Physics Letters. 2014;104(10):101909. doi: 10.1063/1.4868542

33. De AK, Roy D, Dutta A, Goswami D. Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination. Appl Opt. 2009;48(31):G33–G37. doi: 10.1364/AO.48.000G33 19881642

Článek vyšel v časopise


2019 Číslo 12