Intrinsic and extrinsic factors associated with sputum characteristics of presumed tuberculosis patients

Autoři: Fred Orina aff001;  Moses Mwangi aff002;  Hellen Meme aff001;  Benson Kitole aff003;  Evans Amukoye aff001
Působiště autorů: Center for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Republic of Kenya aff001;  Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Republic of Kenya aff002;  Malindi Sub-County Hospital, KIlifi, Republic of Kenya aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article



Sputum remains the most preferred specimen for detection of Mycobacterium tuberculosis due to its non-invasive method of production. Good quality sputum specimen is essential for accurate diagnosis of pulmonary tuberculosis (PTB). It is therefore imperative to assess factors that are related to the production of sputum that is of the best quality.


We assessed the intrinsic and extrinsic characteristics of presumed tuberculosis patients and the quality of sputum they produced.


This was a cross-sectional study in which consenting enrolled presumed tuberculosis patients were subjected to medical examination and a structured questionnaire administered to collect clinical history, demographic information, environmental and behavioral characteristics. The enrolled participants were instructed on how to collect spot and morning sputum specimens for macroscopic and microscopic assessment to determine any association.


A total of 309 patients were enrolled into the study with an even distribution on gender (50.5% males). Of these, 202 (65.3%) submitted both a spot and a morning specimen for analysis. On macroscopic examination, 70% spot and 68% morning sputum were characterized as good quality (Purulent/mucoid). The factors associated (p<0.05) with quality specimen included both intrinsic and extrinsic factors. The intrinsic factors included: difficulty in breathing, presence of conjunctivitis and knowledge of the disease whereas the only extrinsic factor associated with production of good quality sputum for tuberculosis diagnosis was time taken by patient to seek tuberculosis treatment after occurrence of any of the TB symptoms.


Both intrinsic and extrinsic factors affected the quality of sputum produced by presumed tuberculosis patients. Clinical and behavioral characteristics including conjunctivitis, difficulty in breathing and delay in seeking treatment were important factors that determined the production of good quality sputum specimens, while knowledge of tuberculosis disease did not compel presumed tuberculosis patients to produce good quality sputum for diagnosis of the disease.

Klíčová slova:

Breathing – Coughing – Diagnostic medicine – Sputum – Tuberculosis – Tuberculosis diagnosis and management


1. Global tuberculosis report 2017. Geneva: World Health Organization, 2017.

2. WHO. policy on collaborative TB/HIV activities 2019.

3. Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med. 2013; 2013:828939. doi: 10.1155/2013/828939 23476764

4. Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2013; 505:218–22. doi: 10.1038/nature12799 24336213

5. Bastos HN, Osório NS, Gagneux S, Comas SM. The Troika host–pathogen–extrinsic factors in tuberculosis: modulating inflammation and clinical outcomes. Front Immunol. 2017; 8; 1948. doi: 10.3389/fimmu.2017.01948 29375571

6. Rubin BK. The pharmacologic approach to airway clearance: mucoactive agents. Respir Care 2002; 47: 818–822 12088552

7. Murray P, Baron EJ, Jorgenson JH, et al: Manual of Clinical Microbiology. 2007, Washington, DC: ASM Press, 1–319. 9

8. Stop TB Partnership. Laboratory diagnosis of tuberculosis by sputum microscopy. Global Laboratory Initiative Adelaide, Australia: SA Pathology; 2013.

9. Nadziejko CE, Slomiany BL, Slomiany A. Most of the lipid in purulent sputum is bound to mucus glycoprotein. Exp Lung Res. 1993; 19(6):671–84. doi: 10.3109/01902149309064364 8281913

10. Orina F., Mwangi M., Githui W.A, Ogaro T, Kiptoo M., Sang W.K., et al Effect of sputum quality on Xpert® MTB/RIF results in the detection of Mycobacterium tuberculosis from persons presumed to have Tuberculosis in EAPHLN project Operational Research study sites in Kenya. Published in Afr J Health Sci. 2014; 27(4)supp: 516–525.

11. Yoon SH, Lee NKand Yim JJ. Impact of sputum gross appearance and volume on smear positivity of pulmonary tuberculosis: a prospective cohort study. BMC Infectious Diseases 2012; 12:172 doi: 10.1186/1471-2334-12-172 22853561

12. Wong LK, Barry AL, Horgan SM. Comparison of six different criteria for judging the acceptability of sputum specimens. J ClinMicrobiol 1982; 16: 627–631.

13. Zhai K, Lu Y, Shi HZ. Tuberculous pleural effusion. J Thorac Dis. 2016;8(7):E486–E494. doi: 10.21037/jtd.2016.05.87 27499981

14. Lahiri K., Landge A., Gahlowt P., Bhattar A., Rai R. Phlyctenular conjunctivitis and tuberculosis. Pediatr Infect Dis J. 2015;34(6):675

15. Biswas J, Badrinath SS. Ocular morbidity in patients with active systemic tuberculosis. Int Ophthalmol. 1995; 19(5):293–298. doi: 10.1007/bf00130924 8864813

16. Donahue HC. Ophthalmologic experience in a tuberculosis sanatorium. Am J Ophthalmol. 1967;64(4):742–748 doi: 10.1016/0002-9394(67)92860-7 6061532

17. Jedrzejas MJ. Review Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev. 2001; 65(2):187–207 doi: 10.1128/MMBR.65.2.187-207.2001 11381099

18. Buck JM, Lexau C, Shapiro M, Glennen A, Boxrud DJ, Koziol B, Whitney CG, Beall B, Danila R, Lynfield R. A community outbreak of conjunctivitis caused by nontypeable Streptococcus pneumoniae in Minnesota. Pediatr Infect Dis J. 2006; 25(10):906–11 doi: 10.1097/ 17006286

19. Rafiezadeh P, Schmack I, Shajari M and Kohnen T. Autoimmune keratitis in mycobacterium tuberculosis. J Curr Ophthalmol. 2018; 30(4): 381–383. doi: 10.1016/j.joco.2018.03.001 30555976

20. Tarabishy AB, Jeng BH. Review Bacterial conjunctivitis: a review for internists. Cleve Clin J Med. 2008; 75(7):507–12. doi: 10.3949/ccjm.75.7.507 18646586

21. Cai J, Wang X, Ma A, Wang Q, Han X, Li Y. Factors associated with patient and provider delays for tuberculosis diagnosis and treatment in Asia: a systematic review and meta-analysis. PLoS One. 2015; 10(3):e0120088. doi: 10.1371/journal.pone.0120088 25807385

22. WHO. Treatment of tuberculosis: guidelines for national programmes. 2. Geneva: World Health Organization; 1997.

23. Lambert ML, Van der Stuyft P. Delays to tuberculosis treatment: shall we continue to blame the victim? Trop Med Int Health. 2005; 10(10):945–6. doi: 10.1111/j.1365-3156.2005.01485.x 16185227

24. Ford C, Bayer A, Gilman R, Onifade D, Acosta C, Cabrera L, Vidal C, Evans C. Factors associated with delayed tuberculosis test-seeking behavior in the Peruvian Amazon. Am J Trop Med Hyg. 2009; 81(6):1097–102. doi: 10.4269/ajtmh.2009.08-0627 19996443

25. Finnie RK, Khoza LB, van den Borne B, Mabunda T, Abotchie P, Mullen PD. Factors associated with patient and health care system delay in diagnosis and treatment for TB in sub-Saharan African countries with high burdens of TB and HIV. Trop Med Int Health. 2011; 16(4): 394–411. doi: 10.1111/j.1365-3156.2010.02718.x 21320240

26. Virenfeldt J, Rudolf F, Camara C, Furtado A, Gomes V, Aaby P, Petersen E, Wejse C. Treatment delay affects clinical severity of tuberculosis: a longitudinal cohort study. BMJ Open. 2014; 4(6):e004818. doi: 10.1136/bmjopen-2014-004818 24916087

27. Lusignani L, Quaglio G, Atzori A, Nsuka J, Grainger R, Da Conceiçao Palma M, Putoto G, Manenti F. Factors associated with patient and health care system delay in diagnosis for tuberculosis in the province of Luanda, Angola. BMC Infect Dis. 2013; 13:168. doi: 10.1186/1471-2334-13-168 23566166

28. Nogueira BMF, Rolla VC, Akrami KM, Kiene SM. Factors associated with tuberculosis treatment delay in patients co-infected with HIV in a high prevalence area in Brazil. PLoS One. 2018; 13(4):e0195409. Published 2018 Apr 6. doi: 10.1371/journal.pone.0195409 29624603

29. Uys PW, Warren RM, van Helden PD. A threshold value for the time delay to TB diagnosis. PLoS One. 2007; 2(8):e757. doi: 10.1371/journal.pone.0000757 17712405

30. Paramasivam S, Thomas B, Chandran P, Thayyil J, George B, Sivakumar CP. Diagnostic delay and associated factors among patients with pulmonary tuberculosis in Kerala. J Family Med Prim Care. 2017;6(3):643–648. doi: 10.4103/2249-4863.222052 29417023

31. Adenager GS, Alemseged F, Asefa H, Gebremedhin AT. Factors Associated with Treatment Delay among Pulmonary Tuberculosis Patients in Public and Private Health Facilities in Addis Ababa, Ethiopia. Tuberc Res Treat. 2017;2017:5120841. doi: 10.1155/2017/5120841 28348887

32. Cegielski JP, McMurray DN. Tuberculosis: Nutrition and Susceptibility. In: Caballero B, Allen L, Prentice A, editors. Encyclopedia of Human Nutrition, 2nd ed (4 Vol Set). Oxford: Elsevier, 2005;289–290

33. Lönnroth K, Williams BG, Cegielski P, Dye C. Review A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2010; 39(1):149–55. doi: 10.1093/ije/dyp308 19820104

34. Casha. A., Scarci. M: The link between tuberculosis and body mass index:

35. Vargas D, García L, Gilman RH, et al. Diagnosis of sputum-scarce HIV-associated pulmonary tuberculosis in Lima, Peru. Lancet. 2005; 365(9454):150–2. doi: 10.1016/S0140-6736(05)17705-8 15639297

36. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003; 163(9):1009–21. doi: 10.1001/archinte.163.9.1009 12742798

37. Munthali L, Khan PY, Mwaungulu NJ, et al. The effect of HIV and antiretroviral therapy on characteristics of pulmonary tuberculosis in northern Malawi: a cross-sectional study. BMC Infect Dis. 2014; 14:107. Published 2014 Feb 25. doi: 10.1186/1471-2334-14-107 24568242

38. Bhatt M, Kant S, Bhaskar R. Pulmonary tuberculosis as differential diagnosis of lung cancer. South Asian J Cancer. 2012; 1(1):36–42 doi: 10.4103/2278-330X.96507 24455507

39. GOLD 2017: The global initiative for chronic obstructive lung disease.

40. Jiang XQ, Mei XD, Feng D. Air pollution and chronic airway diseases: what should people know and do?. J Thorac Dis. 2016; 8(1):E31–40. doi: 10.3978/j.issn.2072-1439.2015.11.50 26904251

41. Chung W.S., Lin C.L., Hung C.T., Chu Y.H., Sung F.C., Kao C.H., et al. Tuberculosis increases the subsequent risk of acute coronary syndrome: a nationwide population-based cohort study. Int J Tuberc Lung Dis, 2014;18:79–83 doi: 10.5588/ijtld.13.0288 24365557

42. Sheu J.J., Chiou H.Y., Kang J.H., Chen Y.H., Lin H.C. Tuberculosis and the risk of ischemic stroke: a 3-year follow-up study. Stroke, 2010;41: 244–249 doi: 10.1161/STROKEAHA.109.567735 20035070

43. Marak B, Kaur P, Rao S.R., Selvaraju S. Non-communicable disease comorbidities and risk factors among tuberculosis patients, Meghalaya, India. Indian J Tuberc, 2016;63: 123–125 doi: 10.1016/j.ijtb.2015.07.018 27451823

44. Shen T.C., Huang K.Y., Chao C.H., Wang Y.C., Muo C.H., Wei C.C., et al.The risk of chronic kidney disease in tuberculosis: a population-based cohort study. QJM, 2014;108: 397–403 doi: 10.1093/qjmed/hcu220 25352683

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden