Wireless intravesical device for real-time bladder pressure measurement: Study of consecutive voiding in awake minipigs

Autoři: Mohammad Ayodhia Soebadi aff001;  Marko Bakula aff004;  Lukman Hakim aff002;  Robert Puers aff004;  Dirk De Ridder aff001
Působiště autorů: Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Belgium aff001;  Department of Urology, Faculty of Medicine, Dr Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia aff002;  Department of Urology, Universitas Airlangga Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia aff003;  ESAT-MICAS, KU Leuven, Belgium aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225821


Traditional urodynamics have poor correlation with urological symptoms. Ambulatory urodynamics may improve this correlation but the need for a transurethral catheter and the time-consuming nature of this examination limits its use. Therefore, the objective of this study was to develop a wireless real-time bladder pressure measurement device for repeated and prolonged-term measurement of bladder behavior in awake pigs. The Bladder Pill is an intravesical device with a pressure microsensor and a 3-dimensional inductive coupling coil for energy supply. A corresponding external coil provides wireless power transmission and real-time communication of bladder pressure data. To test the correlation between the pressure data measured by the device and by standard methods, we compared static water column pressures with this device and water-filled urodynamic catheter systems. In vivo assessment of awake voiding by the pill was done by introducing the bladder pill into the bladder of Göttingen minipigs. An air-charged urodynamic catheter was introduced transurethrally as control for pressure measurements. The optimal physical configuration of the pill was investigated to maximize the containment in the bladder. We used two versions of external signal receivers (one waistband and one rectangular frame) to test the optimal external signal capture. Next to that, we performed short-term and medium-term comparative pressure studies. The in vitro static pressure measurement demonstrated a mean difference of less than 1 cm H2O between the methods. The optimal design of the pill for maximal retainment in the bladder proved to be a pigtail configuration. The bending of the device during bladder contractions caused offset of 2.7 +/- 1.4 cm H2O (mean +/- SD) on the pressure measurements. The rectangular frame performed signal capture during 5 consecutive voids with a good correlation of the pressure measurements. The device can be inserted through the urethra and is retrieved using string or endoscopic extraction. In conclusion, wireless long-term measurement of bladder pressure is demonstrated and yields comparable results to current available catheter methods of measurement in a pig model.

Klíčová slova:

Bladder – Catheters – Communication equipment – Measurement equipment – Medical devices and equipment – Medical implants – Urine – Urodynamics


1. Rosier PFWM, Schaefer W, Lose G, Goldman HB, Guralnick M, Eustice S, et al. International Continence Society Good Urodynamic Practices and Terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study. Neurourol Urodyn. John Wiley & Sons, Ltd; 2017;36: 1243–1260. doi: 10.1002/nau.23124 27917521

2. Musco S, Padilla-Fernández B, Del Popolo G, Bonifazi M, Blok BFM, Groen J, et al. Value of urodynamic findings in predicting upper urinary tract damage in neuro-urological patients: A systematic review. Neurourology and Urodynamics. John Wiley & Sons, Ltd; 2018. pp. 1522–1540. doi: 10.1002/nau.23501 29392753

3. Hashim H, Abrams P. Is the Bladder a Reliable Witness for Predicting Detrusor Overactivity? J Urol. Elsevier; 2006;175: 191–194. doi: 10.1016/S0022-5347(05)00067-4 16406907

4. Leitner L, Walter M, Sammer U, Knüpfer SC, Mehnert U, Kessler TM. Urodynamic Investigation: A Valid Tool to Define Normal Lower Urinary Tract Function? Shore N, editor. PLoS One. Public Library of Science; 2016;11: e0163847. doi: 10.1371/journal.pone.0163847 27736908

5. Rademakers KL, Drossaerts JM, Rahnama’i MS, van Koeveringe GA. Differentiation of lower urinary tract dysfunctions: The role of ambulatory urodynamic monitoring. Int J Urol. John Wiley & Sons, Ltd; 2015;22: 503–507. doi: 10.1111/iju.12723 25711671

6. Digesu GA, Gargasole C, Hendricken C, Gore M, Kocjancic E, Khullar V, et al. ICS teaching module: Ambulatory urodynamic monitoring. Neurourol Urodyn. John Wiley & Sons, Ltd; 2017;36: 364–367. doi: 10.1002/nau.22933 26594872

7. Pannek J, Pieper P. Clinical usefulness of ambulatory urodynamics in the diagnosis and treatment of lower urinary tract dysfunction. Scand J Urol Nephrol. 2008;42: 428–432. doi: 10.1080/00365590802299056 18759165

8. Oh S-J, Son H, Yun Jeong J, Hyeon Ku J, Hyeon JK. Patients’ experience with ambulatory urodynamics. Scand J Urol Nephrol. 2006;40: 391–396. doi: 10.1080/00365590600744014 17060086

9. Van Koeveringe GA, Rahnama’i MS, Berghmans BCM. The additional value of ambulatory urodynamic measurements compared with conventional urodynamic measurements. BJU Int. 2010;105: 508–513. doi: 10.1111/j.1464-410X.2009.08790.x 19673868

10. Vírseda-Chamorro M, Salinas-Casado J, de la Marta-García M, Esteban-Fuertes M, Méndez S. Comparison of ambulatory versus video urodynamics in patients with spinal cord injury. Spinal Cord. International Spinal Cord Society; 2014;52: 551–5. doi: 10.1038/sc.2014.9 24663000

11. Jourand P, Puers R. The BladderPill: An in-body system logging bladder pressure. Sensors Actuators A Phys. Elsevier B.V.; 2010;162: 160–166.

12. Wille S, Schumacher P, Paas J, Tenholte D, Eminaga O, Müller U, et al. Catheterless long-term ambulatory urodynamic measurement using a novel three-device system. Barbosa MA, editor. PLoS One. Public Library of Science; 2014;9: e96280. doi: 10.1371/journal.pone.0096280 24840482

13. Huppertz ND, Kirschner-Hermanns R, Tolba RH, Grosse JO. Telemetric monitoring of bladder function in female Göttingen minipigs. BJU Int. 2015;116: 823–32. doi: 10.1111/bju.13089 25682883

14. Majerus SJA, Fletter PC, Ferry EK, Zhu H, Gustafson KJ, Damaser MS. Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor. Zhang Y, editor. PLoS One. 2017;12: e0168375. doi: 10.1371/journal.pone.0168375 28060842

15. Clasbrummel B, Muhr G, Jettkant B, Dehm J, Schlierf R, Mokwa W, et al. Mikro- und Nanosystemtechnik–medizintechnologische Aspekte am Beispiel eines Blasendrucksensors. Chir Gastroenterol. Karger Publishers; 2005;21: 38–42. doi: 10.1159/000089346

16. Bakula M, Soebadi A, Ridder D De, Puers R, De Ridder D, Puers R. The Bladder Pill: Developments Toward Bladder Pressure Measurement in Wake Mini-pigs. Procedia Eng. 2016;168: 193–196. doi: 10.1016/j.proeng.2016.11.215

17. Animals NRC (US) C for the U of the G for the C and U of L. Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. National Academies Press (US); 2011. doi: 10.1258/la.2010.010031

18. Couri BM, Bitzos S, Bhardwaj D, Lockhart E, Yue A, Goping I. Performance analysis of the T-DOC air-charged catheters: An alternate technology for urodynamics. Neurourol Urodyn. Wiley-Blackwell; 2018;37: 619–625. doi: 10.1002/nau.23342 28715147

19. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21: 167–78. doi: 10.1002/nau.10052 11857671

20. Huppertz N, Tolba R, Grosse J. Micturition in Göttingen minipigs: first reference in vivo data for urological research and review of literature. Lab Anim. SAGE PublicationsSage UK: London, England; 2015;49: 336–344. doi: 10.1177/0023677215570993 25660835

21. Gammie A, Abrams P, Bevan W, Ellis-Jones J, Gray J, Hassine A, et al. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice. Neurourol Urodyn. Wiley-Blackwell; 2016;35: 926–933. doi: 10.1002/nau.22827 26250500

22. Basu AS, Majerus S, Ferry E, Makovey I, Zhu H, Damaser MS. Is submucosal bladder pressure monitoring feasible? Proc Inst Mech Eng Part H J Eng Med. SAGE PublicationsSage UK: London, England; 2019;233: 100–113. doi: 10.1177/0954411918754925 30799738

23. Cicchetti D V. Interreliability Standards in Psychological Evaluations. Psychol Assess. 1994; 284–290.

24. Oliver R, Wells H, Traxer O, Knoll T, Aboumarzouk O, Biyani CS, et al. Ureteric stents on extraction strings: a systematic review of literature. Urolithiasis. Springer Berlin Heidelberg; 2018;46: 129–136. doi: 10.1007/s00240-016-0898-1 27324264

25. Jourand P, Puers R. An Autonomous, Capacitive Sensor Based and Battery Powered Internal Bladder Pressure Monitoring System. PROCHE. Elsevier B.V.; 2009;1: 1263–1266.

26. Majerus SJA, Fletter PC, Damaser MS, Garverick SL. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Trans Biomed Eng. Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA. steve.majerus@case.edu; 2011;58: 763–767. doi: 10.1109/TBME.2010.2085002 20934942

27. Guan Z, Kiruluta G, Coolsaet B, Elhilali M. Conscious minipig model for evaluating the lower urinary tract. Neurourol Urodyn. John Wiley & Sons, Ltd; 1994;13: 147–158. doi: 10.1002/nau.1930130207 8032358

28. Hogan S, Gammie A, Abrams P. Urodynamic features and artefacts. Neurourol Urodyn. John Wiley & Sons, Ltd; 2012;31: 1104–1117. doi: 10.1002/nau.22209 22473568

29. Gammie A, D’Ancona C, Kuo H-C, Rosier PFW. ICS teaching module: Artefacts in urodynamic pressure traces (basic module). Neurourol Urodyn. John Wiley & Sons, Ltd; 2017;36: 35–36. doi: 10.1002/nau.22881 26372678

30. Zehnder P, Roth B, Burkhard FC, Kessler TM. Air charged and microtip catheters cannot be used interchangeably for urethral pressure measurement: a prospective, single-blind, randomized trial. J Urol. 2008;180: 1013–7. doi: 10.1016/j.juro.2008.05.028 18639301

31. Hundley AF, Brown MB, Brubaker L, Cundiff GW, Kreder K, Lotze P, et al. A multicentered comparison of measurements obtained with microtip and external water pressure transducers. Int Urogynecol J. 2006;17: 400–406. doi: 10.1007/s00192-005-0027-0 16284710

32. Digesu GA, Derpapas A, Robshaw P, Vijaya G, Hendricken C, Khullar V. Are the measurements of water-filled and air-charged catheters the same in urodynamics? Int Urogynecol J. 2014;25: 123–130. doi: 10.1007/s00192-013-2182-z 23903819

33. Hundley AF, Visco AG. Comparison of measurements obtained with microtip and external water pressure transducers. Int Urogynecol J Pelvic Floor Dysfunct. 15: 276–80. doi: 10.1007/s00192-004-1157-5 15517674

34. Andersson K-E, Soler R, Füllhase C. Rodent models for urodynamic investigation. Neurourol Urodyn. 2011;30: 636–46. doi: 10.1002/nau.21108 21661007

35. Hoebeke PB, Van Gool JD, Van Laecke E, Vande Walle J, Plancke H. The after-contraction in paediatric urodynamics. Br J Urol. 1996;78: 780–2. doi: 10.1046/j.1464-410x.1996.19822.x 8976779

36. Rodrigues P, Hering F, Campagnari JC. Urodynamic after-contraction waves: a large observational study in an adult female population and correlation with bladder and ureter emptying functions in women. Urol Int. Karger Publishers; 2014;93: 431–6. doi: 10.1159/000360139 25059632

37. Veeratterapillay R, Coates J, Leonard A, Pickard R, Drinnan M, Harding C. Detrusor after-contraction on ambulatory urodynamics in symptomatic women. Int J Urol. Wiley/Blackwell (10.1111); 2015;22: 1058–1062. doi: 10.1111/iju.12887 26300214

38. W G Bongers CC, M Daanen HA, Bogerd CP, E Hopman MT, H Eijsvogels TM. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems. Med Sci Sport Exerc. 2018;50: 169–175. doi: 10.1249/MSS.0000000000001403 28816921

39. Bruaene C Van de. Small bowel capsule endoscopy: Where are we after almost 15 years of use? World J Gastrointest Endosc. Baishideng Publishing Group Inc; 2015;7: 13. doi: 10.4253/wjge.v7.i1.13 25610531

40. Karam R, Bourbeau D, Majerus S, Makovey I, Goldman H, Damaser M, et al. Real-Time Classification of Bladder Events for Effective Diagnosis and Treatment of Urinary Incontinence. IEEE Trans Biomed Eng. 2015;63: 1–1. doi: 10.1109/TBME.2015.2469604 26292331

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden