Primary Epstein-Barr virus infection with and without infectious mononucleosis


Autoři: Klaus Rostgaard aff001;  Henry H. Balfour, Jr. aff002;  Ruth Jarrett aff004;  Christian Erikstrup aff005;  Ole Pedersen aff006;  Henrik Ullum aff007;  Lars Peter Nielsen aff008;  Marianne Voldstedlund aff009;  Henrik Hjalgrim aff001
Působiště autorů: Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark aff001;  Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, United States of America aff002;  Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, United States of America aff003;  MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom aff004;  Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark aff005;  Department of Clinical Immunology, Næstved Hospital, Næstved, Denmark aff006;  Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark aff007;  Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark aff008;  Department of Infectious Epidemiology, Statens Serum Institut, Copenhagen, Denmark aff009;  Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark aff010
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226436

Souhrn

Background

Infectious mononucleosis (IM) is a common adverse presentation of primary infection with Epstein-Barr virus (EBV) in adolescence and later, but is rarely recognized in early childhood where primary EBV infection commonly occurs. It is not known what triggers IM, and also not why IM risk upon primary EBV infection (IM attack rate) seemingly varies between children and adolescents. IM symptoms may be severe and persist for a long time. IM also markedly elevates the risk of Hodgkin lymphoma and multiple sclerosis for unknown reasons. The way IM occurrence depends on age and sex is incompletely described and hard to interpret etiologically, because it depends on three quantities that are not readily observable: the prevalence of EBV-naϊve persons, the hazard rate of seroconverting and the attack rate, i.e. the fraction of primary EBV infections that is accompanied by IM. We therefore aimed to provide these quantities indirectly, to obtain epidemiologically interpretable measures of the dynamics of IM occurrence to provide etiological clues.

Methods and findings

We used joint modeling of EBV prevalence and IM occurrence data to provide detailed sex- and age-specific EBV infection rates and IM attack rates and derivatives thereof for a target population of all Danes age 0–29 years in 2006–2011. We demonstrate for the first time that IM attack rates increase dramatically rather precisely in conjunction to typical ages of puberty onset. The shape of the seroconversion hazard rate for children and teenagers confirmed a priori expectations and underlined the importance of what happens at age 0–2 years. The cumulative risk of IM before age 30 years was 13.3% for males and 22.4% for females. IM is likely to become more common through delaying EBV infection in years to come.

Conclusions

The change in attack rate at typical ages of puberty onset suggests that the immunologic response to EBV drastically changes over a relatively short age-span. We speculate that these changes are an integrated part of normal sexual maturation. Our findings may inform further etiologic research into EBV-related diseases and vaccine design. Our methodology is applicable to the epidemiological study of any infectious agent that establishes a persistent infection in the host and the sequelae thereof.

Klíčová slova:

Adolescents – Antibodies – Blood donors – Danish people – Epstein-Barr virus – General practitioners – Children – Immune response


Zdroje

1. Balfour HH, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W. Age-specific prevalence of epstein-barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis. 2013;208: 1286–93. doi: 10.1093/infdis/jit321 23868878

2. Jayasooriya S, de Silva TI, Njie-jobe J, Sanyang C, Leese AM, Bell AI, et al. Early Virological and Immunological Events in Asymptomatic Epstein-Barr Virus Infection in African Children. PLOS Pathog. 2015;11: e1004746. doi: 10.1371/journal.ppat.1004746 25816224

3. Cohen JI. Epstein–barr virus vaccines. Clin Transl Immunol. 2015;4: e32. doi: 10.1038/cti.2014.27 25671130

4. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380: 2095–2128. doi: 10.1016/S0140-6736(12)61728-0 23245604

5. Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M, Zhang JS, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349: 1324–32. doi: 10.1056/NEJMoa023141 14523140

6. Hjalgrim H, Smedby KE, Rostgaard K, Molin D, Hamilton-Dutoit S, Chang ET, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67: 2382–8. doi: 10.1158/0008-5472.CAN-06-3566 17332371

7. Nielsen TR, Rostgaard K, Nielsen NM, Koch-Henriksen N, Haahr S, Sørensen PS, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007;64: 72–5. doi: 10.1001/archneur.64.1.72 17210811

8. Coghill AE, Hildesheim A. Epstein-Barr virus antibodies and the risk of associated malignancies: Review of the literature. Am J Epidemiol. 2014;180: 687–695. doi: 10.1093/aje/kwu176 25167864

9. Balfour HH, Dunmire SK, Hogquist KA. Infectious mononucleosis. Clin Transl Immunol. 2015;4: e33. doi: 10.1038/cti.2015.1 25774295

10. Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25: 587–617. doi: 10.1146/annurev.immunol.25.022106.141553 17378764

11. Dunmire SK, Hogquist KA, Balfour HH. Infectious Mononucleosis. Münz C, editor. Curr Top Microbiol Immunol. 2015;390: 211–40. doi: 10.1007/978-3-319-22822-8_9 26424648

12. Dunmire SK, Grimm JM, Schmeling DO, Balfour HH, Hogquist KA. The Incubation Period of Primary Epstein-Barr Virus Infection: Viral Dynamics and Immunologic Events. PLoS Pathog. 2015;11: e1005286. doi: 10.1371/journal.ppat.1005286 26624012

13. Abbott RJ, Pachnio A, Pedroza-Pacheco I, Leese AM, Begum J, Long HM, et al. Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. J Virol. 2017;91: JVI.00382-17. doi: 10.1128/JVI.00382-17 28835490

14. Odame J, Robinson J, Khodai-Booran N, Yeung S, Mazzulli T, Stephens D, et al. Correlates of illness severity in infectious mononucleosis. Can J Infect Dis Med Microbiol. 2014;25: 277–80. doi: 10.1155/2014/514164 25371691

15. Rickinson AB, Long HM, Palendira U, Münz C, Hislop AD. Cellular immune controls over Epstein-Barr virus infection: New lessons from the clinic and the laboratory. Trends Immunol. 2014;35: 159–169. doi: 10.1016/j.it.2014.01.003 24589417

16. Williams H, Macsween K, McAulay K, Higgins C, Harrison N, Swerdlow A, et al. Analysis of immune activation and clinical events in acute infectious mononucleosis. J Infect Dis. 2004;190: 63–71. doi: 10.1086/421276 15195244

17. Chan CW, Chiang AKS, Chan KH, Lau ASY. Epstein-Barr virus-associated infectious mononucleosis in Chinese children. Pediatr Infect Dis J. 2003;22: 974–978. doi: 10.1097/01.inf.0000095199.56025.96 14614370

18. Visser E, Milne D, Collacott I, Mclernon D, Counsell C, Vickers M. The epidemiology of infectious mononucleosis in Northern Scotland: a decreasing incidence and winter peak. BMC Infect Dis. 2014;14: 1–8. doi: 10.1186/1471-2334-14-1

19. Rostgaard K, Nielsen TR, Wohlfahrt J, Ullum H, Pedersen O, Erikstrup C, et al. Sibship structure and risk of infectious mononucleosis: a population-based cohort study. Int J Epidemiol. 2014;43: 1607–1614. doi: 10.1093/ije/dyu118 25436250

20. Crawford DH, Macsween KF, Higgins CD, Thomas R, McAulay K, Williams H, et al. A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis. 2006;43: 276–82. doi: 10.1086/505400 16804839

21. Balfour HH, Odumade O a, Schmeling DO, Mullan BD, Ed J a, Knight J a, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207: 80–8. doi: 10.1093/infdis/jis646 23100562

22. Grimm JM, Schmeling DO, Dunmire SK, Knight JA, Mullan BD, Ed JA, et al. Prospective studies of infectious mononucleosis in university students. Clin Transl Immunol. 2016;5: e94. doi: 10.1038/cti.2016.48 27588199

23. Dan R, Chang RS. A prospective study of primary Epstein-Barr virus infections among university students in Hong Kong. Am J Trop Med Hyg. 1990;42: 380–5. doi: 10.4269/ajtmh.1990.42.380 2158753

24. Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29: 541–549. doi: 10.1007/s10654-014-9930-3 24965263

25. Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National patient registry: A review of content, data quality, and research potential. Clin Epidemiol. 2015;7: 449–490. doi: 10.2147/CLEP.S91125 26604824

26. Rostgaard K, Wohlfahrt J, Hjalgrim H. A genetic basis for infectious mononucleosis: evidence from a family study of hospitalized cases in Denmark. Clin Infect Dis. 2014;58: 1684–9. doi: 10.1093/cid/ciu204 24696238

27. Pedersen OB, Erikstrup C, Kotzé SR, Sørensen E, Petersen MS, Grau K, et al. The Danish Blood Donor Study: a large, prospective cohort and biobank for medical research. Vox Sang. 2012;102: 271. doi: 10.1111/j.1423-0410.2011.01553.x 21967299

28. Pembrey L, Waiblinger D, Griffiths P, Patel M, Azad R, Wright J. Cytomegalovirus, Epstein-Barr virus and varicella zoster virus infection in the first two years of life: A cohort study in Bradford, UK. BMC Infect Dis. 2017;17: 1–18. doi: 10.1186/s12879-016-2122-x

29. Aalen OO, Borgan Ø, Gjessing HK. Survival and Event History Analysis. New York, NY: Springer New York; 2008. doi: 10.1007/978-0-387-68560-1

30. Royston P, Sauerbrei W. Multivariable Model-building—A pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester: Wiley; 2008.

31. Harrell FE. Regression Modeling Strategies. New York, NY: Springer New York; 2001. doi: 10.1007/978-1-4757-3462-1

32. Avgil M, Ornoy A. Herpes simplex virus and Epstein-Barr virus infections in pregnancy: consequences of neonatal or intrauterine infection. Reprod Toxicol. 2006;21: 436–445. doi: 10.1016/j.reprotox.2004.11.014 16580943

33. Jabs WJ, Wagner HJ, Neustock P, Klüter H, Kirchner H. Immunologic properties of Epstein-Barr virus-seronegative adults. J Infect Dis. 1996;173: 1248–51. doi: 10.1093/infdis/173.5.1248 8627079

34. Helminen ME, Kilpinen S, Virta M, Hurme M. Susceptibility to primary Epstein-Barr virus infection is associated with interleukin-10 gene promoter polymorphism. J Infect Dis. 2001;184: 777–80. doi: 10.1086/322987 11517440

35. Hurt C, Tammaro D. Diagnostic Evaluation of Mononucleosis-Like Illnesses. Am J Med. 2007;120: 1–8. doi: 10.1016/j.amjmed.2006.08.023

36. Hesse J, Ibsen KK, Krabbe S, Uldall P. Prevalence of antibodies to Epstein-Barr virus (EBV) in childhood and adolescence in Denmark. Scand J Infect Dis. 1983;15: 335–338. doi: 10.3109/inf.1983.15.issue-4.03 6318303

37. Haahr S, Plesner a. M, Vestergaard BF, Höllsberg P. A role of late Epstein-Barr virus infection in multiple sclerosis. Acta Neurol Scand. 2004;109: 270–275. doi: 10.1046/j.1600-0404.2003.00221.x 15016009

38. Odumade OA, Hogquist KA, Balfour HH. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev. 2011;24: 193–209. doi: 10.1128/CMR.00044-10 21233512

39. Liu Z, Fang F, Chang ET, Adami H-O, Ye W. Sibship size, birth order and risk of nasopharyngeal carcinoma and infectious mononucleosis: a nationwide study in Sweden. Int J Epidemiol. 2016;45: 825–34. doi: 10.1093/ije/dyv038 25925268

40. Kaestle CE, Morisky DE, Wiley DJ. Sexual intercourse and the age difference between adolescent females and their romantic partners. Perspect Sex Reprod Health. 2002;34: 304–9. doi: 10.1363/3430402 12558093

41. Fourcade G, Germi R, Guerber F, Lupo J, Baccard M, Seigneurin A, et al. Evolution of EBV seroprevalence and primary infection age in a French hospital and a city laboratory network, 2000–2016. PLoS One. 2017;12: e0175574. doi: 10.1371/journal.pone.0175574 28414725

42. Tattevin P, Le Tulzo Y, Minjolle S, Person A, Chapplain JM, Arvieux C, et al. Increasing incidence of severe Epstein-Barr virus-related infectious mononucleosis: surveillance study. J Clin Microbiol. 2006;44: 1873–4. doi: 10.1128/JCM.44.5.1873-1874.2006 16672427

43. Wemel AC, Mayet A, Bellier S, Bigaillon C, Rapp C, Ficko C. Severe infectious mononucleosis in immunocompetent adults. Med Mal Infect. 2017;47: 540–545. doi: 10.1016/j.medmal.2017.09.009 28987291

44. Huynh GT, Adler FR. Mathematical modelling the age dependence of Epstein-Barr virus associated infectious mononucleosis. Math Med Biol. 2012;29: 245–61. doi: 10.1093/imammb/dqr007 21700566

45. Münz C. Epstein Barr virus—a tumor virus that needs cytotoxic lymphocytes to persist asymptomatically. Curr Opin Virol. 2016;20: 34–39. doi: 10.1016/j.coviro.2016.08.010 27591678

46. Thompson EE, Nicodemus-Johnson J, Kim KW, Gern JE, Jackson DJ, Lemanske RF, et al. Global DNA methylation changes spanning puberty are near predicted estrogen-responsive genes and enriched for genes involved in endocrine and immune processes. Clin Epigenetics. 2018;10: 62. doi: 10.1186/s13148-018-0491-2 29760811

47. Bruu AL, Hjetland R, Holter E, Mortensen L, Natås O, Petterson W, et al. Evaluation of 12 commercial tests for detection of Epstein-Barr virus-specific and heterophile antibodies. Clin Diagn Lab Immunol. 2000;7: 451–6. doi: 10.1128/cdli.7.3.451-456.2000 10799460

48. Gärtner BC, Hess RD, Bandt D, Kruse A, Rethwilm A, Roemer K, et al. Evaluation of four commercially available Epstein-Barr virus enzyme immunoassays with an immunofluorescence assay as the reference method. Clin Diagn Lab Immunol. 2003;10: 78–82. doi: 10.1128/CDLI.10.1.78-82.2003 12522043

49. Hess Ralf D. Routine Epstein-Barr Virus Diagnostics from the Laboratory Perspective: Still Challenging after 35 Years. J Clin Microbiol. 2004;42: 3381–3387. doi: 10.1128/JCM.42.8.3381-3387.2004 15297472

50. Niederman C, Evans A. Epstein-Barr Virus. In: Evans A, Kaslow R, editors. Viral Infections of Humans epidemiology and Control. 4th. New York and London: Plenum Medical Book Company; 1997. pp. 253–283.

51. Kamper-Jørgensen M. Disease in childhood and the impact of childcare. University of Copenhagen. 2007.

52. Topp SK, Rosenfeldt V, Vestergaard H, Christiansen CB, Von Linstow M-L. Clinical characteristics and laboratory findings in Danish children hospitalized with primary Epstein-Barr virus infection. Infect Dis (Auckl). 2015;47: 908–14. doi: 10.3109/23744235.2015.1082036 26308113

53. Taga K, Taga H, Tosato G. Diagnosis of atypical cases of infectious mononucleosis. Clin Infect Dis. 2001;33: 83–8. doi: 10.1086/320889 11389499

54. Gao L-W, Xie Z-D, Liu Y-Y, Wang Y, Shen K-L. Epidemiologic and clinical characteristics of infectious mononucleosis associated with Epstein-Barr virus infection in children in Beijing, China. World J Pediatr. 2011;7: 45–9. doi: 10.1007/s12519-011-0244-1 21191775

55. González Saldaña N, Monroy Colín VA, Piña Ruiz G, Juárez Olguín H. Clinical and laboratory characteristics of infectious mononucleosis by Epstein-Barr virus in Mexican children. BMC Res Notes. 2012;5: 361. doi: 10.1186/1756-0500-5-361 22818256

56. Nielsen TR, Pedersen M, Rostgaard K, Frisch M, Hjalgrim H. Correlations between Epstein-Barr virus antibody levels and risk factors for multiple sclerosis in healthy individuals. Mult Scler. 2007;13: 420–3. doi: 10.1177/1352458506071470 17439912

57. Mouhieddine TH, Darwish H, Fawaz L, Yamout B, Tamim H, Khoury SJ. Risk factors for multiple sclerosis and associations with anti-EBV antibody titers. Clin Immunol. Elsevier B.V.; 2015;158: 59–66. doi: 10.1016/j.clim.2015.03.011 25805657

58. Ford JL, Stowe RP. Racial-ethnic differences in Epstein-Barr virus antibody titers among U.S. children and adolescents. Ann Epidemiol. 2013;23: 275–280. doi: 10.1016/j.annepidem.2013.02.008 23621993

59. Hjalgrim H. On the aetiology of Hodgkin lymphoma. Dan Med J. 2012;59: B4485. 22759852

60. Burgdorf KS, Simonsen J, Sundby A, Rostgaard K, Pedersen OB, Sørensen E, et al. Socio-demographic characteristics of Danish blood donors. PLoS One. 2017;12: e0169112. doi: 10.1371/journal.pone.0169112 28182624

61. Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3: 107fs7. doi: 10.1126/scitranslmed.3002878 22049067

62. Aalen OO, Røysland K, Gran JM, Ledergerber B. Causality, mediation and time: A dynamic viewpoint. J R Stat Soc Ser A Stat Soc. 2012;175: 831–861. doi: 10.1111/j.1467-985X.2011.01030.x 23193356


Článek vyšel v časopise

PLOS One


2019 Číslo 12