Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels


Autoři: Ru Liang aff001;  Shu Zhang aff002;  Xiangji Peng aff003;  Wanna Yang aff004;  Yanwei Xu aff002;  Ping Wu aff005;  Junhui Chen aff002;  Yongjiang Cai aff006;  Jiyuan Zhou aff002
Působiště autorů: Institute of Management, Beijing Sport University, Beijing, China aff001;  Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China aff002;  Institute of Martial Arts and Traditional Ethnic Sports, Beijing Sport University, Beijing, China aff003;  Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China aff004;  Realbio Genomics Institute, Shanghai, China aff005;  Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China aff006;  Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China aff007
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226240

Souhrn

Recent evidence suggests that athletes have microbial features distinct from those of sedentary individuals. However, the characteristics of the gut microbiota in athletes competing at different levels have not been assessed. The aim of this study was to investigate whether the gut microbiome is significantly different between higher-level and lower-level athletes. Faecal microbiota communities were analysed with hypervariable tag sequencing of the V3–V4 region of the 16S rRNA gene among 28 professional martial arts athletes, including 12 higher-level and 16 lower-level athletes. The gut microbial richness and diversity (the Shannon diversity index (p = 0.019) and Simpson diversity index (p = 0.001)) were significantly higher in the higher-level athletes than in the lower-level athletes. Moreover, the genera Parabacteroides, Phascolarctobacterium, Oscillibacter and Bilophila were enriched in the higher-level athletes, whereas Megasphaera was abundant in the lower-level athletes. Interestingly, the abundance of the genus Parabacteroides was positively correlated with the amount of time participants exercised during an average week. Further analysis of the functional prediction revealed that histidine metabolism and carbohydrate metabolism pathways were markedly over-represented in the gut microbiota of the higher-level athletes. Collectively, this study provides the first insight into the gut microbiota characteristics of professional martial arts athletes. The higher-level athletes had increased diversity and higher metabolic capacity of the gut microbiome for it may positively influence athletic performance.

Klíčová slova:

Carbohydrate metabolism – Exercise – Gut bacteria – Linear discriminant analysis – Microbiome – Ribosomal RNA – Sports


Zdroje

1. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464):541–546. doi: 10.1038/nature12506 23985870.

2. Matsuoka K, Kanai T The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015; 37(1):47–55. doi: 10.1007/s00281-014-0454-4 25420450.

3. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013; 155(7):1451–1463. doi: 10.1016/j.cell.2013.11.024 24315484.

4. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015; 6(6528. doi: 10.1038/ncomms7528 25758642.

5. Weir TExercise: The Next Frontier in Microbiota Research? Exerc Sport Sci Rev. 2017; 45(1):4–5. doi: 10.1249/JES.0000000000000097 27801725.

6. Cerda B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol. 2016; 7(51. doi: 10.3389/fphys.2016.00051 26924990.

7. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013; 121(6):725–730. doi: 10.1289/ehp.1306534 23632211.

8. Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013; 8(5):e65465. doi: 10.1371/journal.pone.0065465 23724144.

9. Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63(12):1913–1920. doi: 10.1136/gutjnl-2013-306541 25021423.

10. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018; 67(4):625–633. doi: 10.1136/gutjnl-2016-313627 28360096.

11. Edgar RC UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10(10):996–998. doi: 10.1038/nmeth.2604 23955772.

12. Segata N, Izard J, Walron L, Gevers D, Miropolsky L, Garrett W, et al. Metagenomic Biomarker Discovery and Explanation. Genome Biology. 2011; 12(6).

13. Pedamallu CS, Bhatt AS, Bullman S, Fowler S, Freeman SS, Durand J, et al. Metagenomic Characterization of Microbial Communities In Situ Within the Deeper Layers of the Ileum in Crohn's Disease. Cell Mol Gastroenterol Hepatol. 2016; 2(5):563–566 e565. doi: 10.1016/j.jcmgh.2016.05.011 28174737.

14. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013; 31(9):814–821. doi: 10.1038/nbt.2676 23975157.

15. Benjamini Y, Yekutieli D The Control of the False Discovery Rate in Multiple Testing Under Dependency. The Annals of Statistics. 2001:1165–1188. doi: 10.1214/aos/1013699998

16. Burke DT, Al-Adawi S, Lee YT, Audette J Martial arts as sport and therapy. J Sports Med Phys Fitness. 2007; 47(1):96–102. 17369805.

17. Bell CC Asian martial arts and resiliency. Ethnicity and Inequalities in Health and Social Care. 2008; 1(2):11–17.

18. Bu B, Haijun H, Yong L, Chaohui Z, Xiaoyuan Y, Singh MF Effects of martial arts on health status: a systematic review. J Evid Based Med. 2010; 3(4):205–219. doi: 10.1111/j.1756-5391.2010.01107.x 21349072.

19. Origua Rios S, Marks J, Estevan I, Barnett LM Health benefits of hard martial arts in adults: a systematic review. J Sports Sci. 2018; 36(14):1614–1622. doi: 10.1080/02640414.2017.1406297 29157151.

20. Shanahan F Probiotics in perspective. Gastroenterology. 2010; 139(6):1808–1812. doi: 10.1053/j.gastro.2010.10.025 20965190.

21. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(7):1761–1772. doi: 10.2337/db06-1491 17456850.

22. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488(7410):178–184. doi: 10.1038/nature11319 22797518.

23. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017; 5(1):98. doi: 10.1186/s40168-017-0320-4 28797298.

24. Liu Z, Liu HY, Zhou H, Zhan Q, Lai W, Zeng Q, et al. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Front Microbiol. 2017; 8(1687. doi: 10.3389/fmicb.2017.01687 28919891.

25. Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fak F Lingonberries reduce atherosclerosis in Apoe(-/-) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res. 2016; 60(5):1150–1160. doi: 10.1002/mnfr.201500738 26890232.

26. Haro C, Montes-Borrego M, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, et al. Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. The Journal of Clinical Endocrinology & Metabolism. 2016; 101(1):233–242.

27. Li L, Su Q, Xie B, Duan L, Zhao W, Hu D, et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system. Neurogastroenterol Motil. 2016; 28(8):1233–1240. doi: 10.1111/nmo.12822 27027909.

28. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017; 14(4):3122–3126. doi: 10.3892/etm.2017.4878 28912861.

29. Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ, et al. Microbial Composition Predicts Genital Tract Inflammation and Persistent Bacterial Vaginosis in South African Adolescent Females. Infect Immun. 2018; 86(1). doi: 10.1128/iai.00410-17 29038128.

30. He X, Ding L, Su W, Ma H, Huang H, Wang Y, et al. Distribution of endotoxins in full scale pharmaceutical wastewater treatment plants and its relationship with microbial community structure. Water Sci Technol. 2018; 77(9–10):2397–2406. doi: 10.2166/wst.2018.162 29893728.

31. Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, et al. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems. 2018; 3(3). doi: 10.1128/mSystems.00044-18 29719871.

32. Campbell SC, Wisniewski PJ 2nd. Exercise is a Novel Promoter of Intestinal Health and Microbial Diversity. Exerc Sport Sci Rev. 2017; 45(1):41–47. doi: 10.1249/JES.0000000000000096 27782912.

33. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc. 2010; 42(6):1162–1173. doi: 10.1249/MSS.0b013e3181c74e38 20479615.

34. Asano RY, Sales MM, Browne RA, Moraes JF, Coelho Junior HJ, Moraes MR, et al. Acute effects of physical exercise in type 2 diabetes: A review. World J Diabetes. 2014; 5(5):659–665. doi: 10.4239/wjd.v5.i5.659 25317243.


Článek vyšel v časopise

PLOS One


2019 Číslo 12