The effect of gut passage by waterbirds on the seed coat and pericarp of diaspores lacking “external flesh”: Evidence for widespread adaptation to endozoochory in angiosperms


Autoři: Mihai Costea aff001;  Hiba El Miari aff001;  Levente Laczkó aff002;  Réka Fekete aff002;  Attila V. Molnár aff002;  Ádám Lovas-Kiss aff003;  Andy J. Green aff004
Působiště autorů: Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada aff001;  Department of Botany, University of Debrecen, Debrecen, Hungary aff002;  Department of Tisza Research, Wetland Ecology Research Group, MTA Centre for Ecological Research-DRI, Debrecen, Hungary aff003;  Wetland Ecology Department, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226551

Souhrn

The widely accepted “endozoochory syndrome” is assigned to angiosperm diaspores with a fleshy, attractive tissue and implies the existence of adaptations for protection against digestion during gut passage. This syndrome has led diaspore fleshiness to be emphasized as the exclusive indicator of endozoochory in much of the ecology and biogeography research. Crucially, however, endozoochory in nature is not limited to frugivory, and diaspores without “external flesh” are commonly dispersed, often over long distances, via birds and mammals by granivory. A key question is: are such diaspores somehow less prepared from an architectural point of view to survive gut passage than fleshy diaspores? To answer this question, we selected 11 European angiosperm taxa that fall outside the classical endozoochory syndrome yet are known to be dispersed via endozoochory. We studied their seed coat/pericarp morphology and anatomy both before and after gut passage through granivorous waterfowl, and determined their seed survival and germinability. We found no fundamental differences in the mechanical architecture of the seed coat and pericarp between these plants dispersed by granivory and others dispersed by frugivory. Neither diaspore traits per se, nor dormancy type, were strong predictors of diaspore survival or degree of damage during gut passage through granivores, or of the influence of gut passage on germinability. Among our 11 taxa, survival of gut passage is enabled by the thick cuticle of the exotesta or epicarp; one or several lignified cell layers; and diverse combinations of other architectural elements. These protection structures are ubiquitous in angiosperms, and likely to have evolved in gymnosperms. Hence, many angiosperm diaspores, dry or fleshy, may be pre-adapted to endozoochory, but with differing degrees of specialization and adaptation to dispersal mechanisms such as frugivory and granivory. Our findings underline the broad ecological importance of “non-classical endozoochory” of diaspores that lack “external flesh”.

Klíčová slova:

Birds – Flowering plants – Fruits – Pericarp – Seed coat – Seeds – Endosperm – Ovules


Zdroje

1. Thanos CA. Aristotle and Theophrastus on plant-animal interactions. In Arianoutsou M, Groves RH, editors. Plant-animal interactions in Mediterranean-type Ecosystems. Dordrecht: Springer; 1994. p. 3–11.

2. Ridley HN. The dispersal of plants throughout the world. L. Reeve & Company, Ltd; 1930.

3. Fahn A, Werker E. Anatomical mechanisms of seed dispersal. In: Kozlowsky TT, editor. Seed biology: importance, development, and germination. Vol 1. New York: Academic Press; 1972. p. 151–221.

4. Van der Pijl L. Principles of dispersal. 3rd ed, SpringerVerlag; 1982.

5. Janson CH. Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science 1983; 219: 187–189. doi: 10.1126/science.219.4581.187 17841688

6. Howe HF. Seed dispersal by fruit-eating birds and mammals In: Murray DR, editor. Seed dispersal. New York: Academic Press; 1986. p. 123–189.

7. Tewksbury JJ. Fruits, frugivores and the evolutionary arms race. New Phytol. 2002; 156: 137–139.

8. Tiffney BH. Vertebrate dispersal of seed plants through time. Annu Rev Ecol Evol Syst. 2004; 35: 1–29.

9. Eriksson O. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol Rev. 2016; 91: 168–186. doi: 10.1111/brv.12164 25530412

10. Vander Wall SB, Longland WS. Diplochory: are two seed dispersers better than one? Trends Ecol Evol. 2004; 19: 155–161. doi: 10.1016/j.tree.2003.12.004 16701247

11. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends Ecol Evol. 2008; 23: 638–647. doi: 10.1016/j.tree.2008.08.003 18823680

12. Schupp EW. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 1993; 107: 15–29.

13. Levin SA, Muller-Landau HC, Nathan R, Chave J. The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst. 2003; 34: 575–604.

14. Hughes L, Dunlop M, French K, Leishman MR, Rice B, Rodgerson L, et al. Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. J Ecol. 1994; 82: 933–950.

15. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013; 61: 167–234.

16. Julve PH 1998. Baseflor. Index botanique, écologique et chorologique de la flore de France. Institut Catholique de Lille, Lille. Available from: http://perso.wanadoo.fr/philippe.julve/catminat.htm [Cited 2019 Oct 12].

17. Heleno R, Vargas P. How do islands become green? Glob Ecol Biogeogr. 2015; 24: 518–526.

18. Vargas P, Nogales M, Jaramillo P, Olesen JM, Traveset A, Heleno R. Plant colonization across the Galápagos Islands: success of the sea dispersal syndrome. Bot J Linn Soc. 2014; 174: 349–358.

19. Arjona Y, Nogales M, Heleno R, Vargas P. Long‐distance dispersal syndromes matter: diaspore–trait effect on shaping plant distribution across the Canary Islands. Ecography 2018; 41: 805–814.

20. Higgins SI, Nathan R and Cain ML. Are long‐distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 2003; 84: 1945–1956.

21. Nogales M, Heleno R, Traveset A, Vargas P. Evidence for overlooked mechanisms of long‐distance seed dispersal to and between oceanic islands. New Phytol. 2012; 194: 313–317. doi: 10.1111/j.1469-8137.2011.04051.x 22250806

22. Bruun HH, Lundgren R, Philipp M. Enhancement of local species richness in tundra by seed dispersal through guts of muskox and barnacle goose. Oecologia 2008; 155: 101–110. doi: 10.1007/s00442-007-0892-y 17990003

23. Willson MF, Rice BL, Westoby M. Seed dispersal spectra: a comparison of temperate plant communities. J Veg Sci. 1990; 1: 547–562.

24. Morgan JW, Venn SE. Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecol. 2017; 218: 813–819.

25. Alsos IG, Ehrich D, Eidesen PB, Solstad H, Westergaard KB, Schönswetter P, et al. Long-distance plant dispersal to North Atlantic islands: colonization routes and founder effect. AoB Plants 2015; 7: plv036. doi: 10.1093/aobpla/plv036 25876627

26. Green AJ, Elmberg J, Lovas-Kiss A. Beyond scatter-hoarding and frugivory: European corvids as overlooked vectors for a broad range of plants. Front Ecol Evol. 2019: 7: 133.

27. van Leeuwen CHA, van der Velde G, van Groenendael JM, Klaassen M. Gut travellers: internal dispersal of aquatic organisms by waterfowl. J Biogeogr. 2012; 39: 2031–2040.

28. Green AJ, Soons M, Brochet AL, Kleyheeg E. Dispersal of plants by waterbirds. In: Şekercioğlu CH, Wenny DG, Whelan CJ, editors. Why birds matter: Avian ecological function and ecosystem services. University of Chicago Press; 2016. p. 147–195.

29. Lovas-Kiss Á, Sánchez MI, Wilkinson DM, Coughlan NE, Alves JA, Green AJ. Shorebirds as important vectors for plant dispersal in Europe. Ecography 2019; 42: 956–967.

30. Hattermann D, Bernhardt-Römermann M, Otte A, Eckstein RL. Geese are overlooked dispersal vectors for vascular plants in archipelago environments. J Veg Sci. 2019; 30: 534–541.

31. Janzen DH. Dispersal of small seeds by big herbivores: foliage is the fruit. Am Nat. 1984; 123: 338–353.

32. Myers JA, Vellend M, Gardescu S, Marks PL. Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America. Oecologia 2004; 139: 35–44 doi: 10.1007/s00442-003-1474-2 14740288

33. Albert A, Auffret AG, Cosyns E, Cousins SAO, D'hondt B, Eichberg C, et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 2015a; 124: 1109–1120.

34. Lovas-Kiss Á, Vizi B, Vincze O, Molnár A, Green AJ. Endozoochory of aquatic ferns and angiosperms by mallards in Central Europe. J Ecol. 2018; 106: 1714–1723.

35. Traveset A, Robertson AW, Rodríguez-Pérez J. A review on the role of endozoochory in seed germination. In Dennis AJ., editor. Seed dispersal: theory and its application in a changing world. CAB International. 2007; p.78–103.

36. Baskin CC, Baskin JM. Seeds: ecology, biogeography, and, evolution of dormancy and germination, 2nd ed. Academic Press; 2014.

37. Soltani E, Baskin CC, Baskin JM, Heshmati S, Mirfazeli MS. A meta-analysis of the effects of frugivory (endozoochory) on seed germination: role of seed size and kind of dormancy. Plant Ecol. 2018; 219: 128–1294.

38. Nogales M, Nieves C, Illera JC, Padilla DP, Traveset A. Effect of native and alien vertebrate frugivores on seed viability and germination patterns of Rubia fruticosa (Rubiaceae) in the eastern Canary Islands. Funct Ecol. 2005; 19: 429–436.

39. Kleyheeg E, Claessens M, Soons MB. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds. PloS ONE 2018; 13: p.e0195026. doi: 10.1371/journal.pone.0195026 29614085

40. Costea M, Stefanović S, García MA, De La Cruz S, Casazza ML, Green AJ. Waterfowl endozoochory: An overlooked long‐distance dispersal mode for Cuscuta (dodder). Am J Bot. 2016; 103: 957–962. doi: 10.3732/ajb.1500507 27208362

41. Ribeiro RC, Figueiredo MLN, Picorelli A, Oliveira DM and Silveira FA. Does seed coat structure modulate gut-passage effects on seed germination? Examples from Miconieae DC. (Melastomataceae). Seed Sci Res. 2016; 26: 139–147.

42. Soons MB, Brochet AL, Kleyheeg E, Green AJ. Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. J Ecol. 2016; 104: 443–455.

43. Horváth F, Dobolyi K, Morschauer R, Lőkös L, Karas L, Szerdahelyi T. Flóra adatbázis 1.2. Vácrátót: MTA ÖBKI; 1995.

44. Lovas-Kiss Á, Vincze O, Kleyheeg E, Sramkó G, Laczkó L, Fekete R, et al. Seed mass, hardness and phylogeny determine the potential for endozoochory by granivorous waterbirds. Ecol. Evol. Forthcoming.

45. Boesewinkel FD, Bouman F. The seed: structure. In: Johri BM, editor. Embryology of Angiosperms. Berlin, Heidelberg: Springer; 1984. p. 567–610.

46. Dalling JW, Davis AS, Schutte BJ, Arnold EA. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J Ecol. 2011; 99: 89–95.

47. Netolitzky F. Anatomie der Angiospermen-samen. Handbuch der Pflanzenanatomie, vol. 4, Gebrüder Borntraeger; 1926.

48. Corner EJH. The Seeds of Dicotyledons. Cambridge: Cambridge University Press; 1976.

49. Takhtajan A. Anatomia seminum comparativa. Vol 1. Liliopsida seu Monocotyledones. Leningrad: Nauka; 1985.

50. Takhtajan A. Anatomia seminum comparativa. Vol 2. Dicotyledons Magnoliidae, Ranunculidae. Leningrad: Nauka; 1988.

51. Takhtajan A. Anatomia seminum comparativa. Vol 3. Dicotyledons Caryophyllidae-Dilleniidae. Leningrad: Nauka; 1991.

52. Takhtajan A. Anatomia seminum comparativa. Vol 4. Dicotyledons Dilleniidae. Leningrad: Nauka; 1992.

53. Takhtajan A. Anatomia seminum comparativa. Vol 5. Dicotyledons Rosidae. St. Petersburg: Mir & Semja; 1996.

54. Endress PK. Angiosperm ovules: diversity, development, evolution. Ann Bot. 2011; 107: 1465–1489. doi: 10.1093/aob/mcr120 21606056

55. Coen O, Magnani E. Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci. 2018; 75: 2509–2511. doi: 10.1007/s00018-018-2816-x 29730767

56. Stull GW, Schori M, Soltis DE, Soltis PS. Character evolution and missing (morphological) data across Asteridae. Am J Bot. 2018; 105: 470–479. doi: 10.1002/ajb2.1050 29656519

57. Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR. Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspect Plant Ecol Syst. 2010; 12: 43–55.

58. Silveira SR, Dornelas MC, Martinelli AP. Perspectives for a framework to understand aril initiation and development. Front Plant Sci. 2016; https://doi.org/10.3389/fpls.2016.01919

59. Stebbins G. Transference of function as a factor in the evolution of seeds and their accessory structures. Israel J Bot. 1970; 19: 59–70.

60. Roth I. Fruits of Angiosperms. Berlin, Stuttgart: Gebrüder Borntraeger; 1977.

61. Bouman F, Boesewinkel FD. 1995. The seed: structure and function. In: Kigel J, Galili G, editors. Seed development and germination. New York, Basel: Marcel Dekker Inc.; 1995, p. 1–24.

62. Werker E. Seed anatomy. Gebruder Borntraeger Verlagsbuchhandlung; 1997.

63. Barthlott W. Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nord J Bot. 1981; 1: 345–355.

64. Lattanzio V, Lattanzio VM, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 2006; 661: 23–67.

65. Ghasemi Y, Faridi P, Mehregan I, Mohagheghzadeh A. Ferula gummosa fruits: an aromatic antimicrobial agent. Chem Nat Compd 2005; 41: 311–314.

66. Stojković D, Soković M, Glamočlija J, Džamić A, Ćirić A, Ristić M, et al. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011; 128: 1017–1022.

67. Yang X, Baskin JM, Baskin CC, Huang Z. More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Syst. 2012; 14: 434–442.

68. Albert A, Marell A, Picard M, Baltzinger C. Using basic plant traits to predict ungulate seed dispersal potential. Ecography 2015b; 38: 440–449.

69. Boedeltje G, Klutman B, Schaap M, Sollman P, de Vos M, Lenssen JPM,et al. 2019. Plant dispersal in a temperate stream by fish species with contrasting feeding habits: the role of plant traits, fish diet, season, and propagule availability. Front Ecol Evol. 2019; 7: 57

70. Dahlgren RMT, Clifford HT, Yeo PF. The families of the Monocotyledons. Structure, evolution, and taxonomy. Berlin: Springer Verlag; 1985.

71. Cronquist A. The evolution and classification of flowering plants. 2nd edition. Bronx, New York: New York Botanical Garden; 1988.

72. Lorts CM, Briggeman T, Sang T. Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. J. Syst Evol. 2008; 46: 396–404.

73. Sokoloff DD, Remizowa MV, Macfarlane TD, Conran JG, Yadav SR, Rudall PJ. Comparative fruit structure in Hydatellaceae (Nymphaeales) reveals specialized pericarp dehiscence in some early-divergent angiosperms with ascidiate carpels. Taxon 2013; 62: 40–61.

74. Bremer B, Eriksson O. Evolution of fruit characters and dispersal modes in the tropical family Rubiaceae. Biol J Linn. Soc. 1992; 47: 79–95.

75. Clausing G, Renner SS. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Am J Bot. 2001; 88: 486–498. 11250827

76. Knapp S. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Experim Bot. 2002: 53: 2001–2022.

77. Li J, Alexander JH, Zhang D. Paraphyletic Syringa (Oleaceae): evidence from sequences of nuclear ribosomal DNA ITS and ETS regions. Syst Bot. 2002; 27: 592–597.

78. Jacobs B, Lens F, Smets E. Evolution of fruit and seed characters in the Diervilla and Lonicera clades (Caprifoliaceae, Dipsacales). Ann Bot. 2009; 104: 253–276. doi: 10.1093/aob/mcp131 19502353

79. Biffin E, Lucas EJ, Craven LA, Ribeiro da Costa I, Harrington MG, Crisp MD. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann Bot. 2010; 106: 79–93. doi: 10.1093/aob/mcq088 20462850

80. Thadeo M, Hampilos KE, Stevenson DW. Anatomy of fleshy fruits in the monocots. Am J Bot. 2015; 102: 1757–1779. doi: 10.3732/ajb.1500204 26507114

81. Xiang Y, Huang CH, Hu Y, Wen J, Li S, Yi T, et al. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol Biol Evol. 2016; 34: 262–281.

82. Edmonds JM. Seed coat struRudalcture and development in Solanum L. section Solanum (Solanaceae). Bot J Linn Soc. 1983; 87: 229–246.

83. Ghimire B, Ghimire BK, Heo K. Seed characteristics of Withania somnifera (Solanaceae). Korean J Plant Taxon. 2011; 41: 103–107.

84. Rudall PJ, Stuppy W, Cunniff J, Kellogg EA, Briggs BG. Evolution of reproductive structures in grasses (Poaceae) inferred by sister‐group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am J Bot. 2005; 92: 1432–1443. doi: 10.3732/ajb.92.9.1432 21646161

85. Endress PK. Evolutionary trends in the Hamamelidales-Fagales-Group. In: Kubitzki K, editor. Flowering plants. Plant systematics and evolution / Entwicklungsgeschichte und Systematik der Pflanzen, vol 1.Vienna: Springer; 1977.

86. Brandbyge J. 1993. Polygonaceae. Dicotyledons. In: Kubitzki K, Rohwer JW, Bittrich V, editors. Flowering plants. Berlin, Heidelberg: Springer; 1993. p. 531–544.

87. Beaulieu JM, Donoghue MJ. Fruit evolution and diversification in campanulid angiosperms. Evolution 2013; 67: 3132–3144. doi: 10.1111/evo.12180 24151998

88. Donoghue MJ, Bell CD, Winkworth RC. The evolution of reproductive characters in Dipsacales. Int J Plant Sci. 2003; 164: 453–464.

89. Andersen MC. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am J Bot 1993; 80: 487–492. doi: 10.1002/j.1537-2197.1993.tb13830.x 30139156

90. Sukhorukov AP, Mavrodiev EV, Struwig M, Nilova MV, Dzhalilova KK, Balandin SA, et al. One-seeded fruits in the core Caryophyllales: their origin and structural diversity. PLOS ONE 2015; 10: e0117974. doi: 10.1371/journal.pone.0117974 25710481

91. Dardick C, Callahan AM. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Front Plant Sci. 2014; 5: 284. doi: 10.3389/fpls.2014.00284 25009543

92. Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol Biol Evol. 2012; 29: 409–419. doi: 10.1093/molbev/msr244 21972256

93. Wilkinson DM, Lovas-Kiss A, Callaghan DA, Green AJ. Endozoochory of large bryophyte fragments by waterbirds. Cryptogamic Bryol. 2017; 38: 223–228.

94. Hervías-Parejo S, Olesen JM, Nogales M, Traveset A, Heleno R. Dispersal of fern spores by Galapagos finches. J. Ornithol. 2019; 160: 831–833.

95. Tiffney BH. The role of vertebrate herbivory in the evolution of land plants. Palaeobotanist. 1992; 41: 87–97.

96. Gould SJ, Vrba ES. Exaptation—a missing term in the science of form. Paleobiology 1982; 8: 4–15.

97. Thomson FJ, Moles AT, Auld TD, Ramp D, Ren S, Kingsford RT. Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J Ecol. 2010; 98: 1310–1318.

98. Tamme R, Gotzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, et al. Predicting species' maximum dispersal distances from simple plant traits. Ecology 2014; 95: 505–513. doi: 10.1890/13-1000.1 24669743

99. Butterfield BJ, Holmgren CA, Anderson RS, Betancourt JL. Life history traits predict colonization and extinction lags of desert plant species since the Last Glacial Maximum. Ecology 2019; 100: e02817. doi: 10.1002/ecy.2817 31291688

100. Vander Wall SB, Moore, CM. Interaction diversity of North American seed‐dispersal mutualisms. Global Ecol Biogeogr. 2016; 25: 1377–1386.

101. Jordano P. Chasing ecological interactions. PLoS Biol. 2016; 14: p.e1002559. doi: 10.1371/journal.pbio.1002559 27631692

102. García C, Klein EK, Jordano P. Dispersal processes driving plant movement: challenges for understanding and predicting range shifts in a changing world. J Ecol. 2017: 105: 1–5.

103. Viana DS, Santamaría L, Figuerola J. Migratory birds as global dispersal vectors. Trends Ecol Evol. 2016; 31: 763–775. doi: 10.1016/j.tree.2016.07.005 27507683

104. Bullock JM, Gonzalez LM, Tamme R, Gotzenberger L, White SM, Partel M, et al. A synthesis of empirical plant dispersal kernels. J Ecol. 2017; 105, 6–19.

105. Reynolds C, Cumming GS. Seed traits and bird species influence the dispersal parameters of wetland plants. Freshw Biol. 2016; 61: 1157–1170.


Článek vyšel v časopise

PLOS One


2019 Číslo 12