The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017


Autoři: Ian A. Critchley aff001;  Nicole Cotroneo aff001;  Michael J. Pucci aff001;  Rodrigo Mendes aff002
Působiště autorů: Spero Therapeutics, Cambridge, Massachusetts, United States of America aff001;  JMI Laboratories, North Liberty, Iowa, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0220265

Souhrn

Urinary tract infections (UTIs) caused by Escherichia coli have been historically managed with oral antibiotics including the cephalosporins, fluoroquinolones and trimethoprim-sulfamethoxazole. The use of these agents is being compromised by the increase in extended spectrum β-lactamase (ESBL)-producing organisms, mostly caused by the emergence and clonal expansion of E. coli multilocus sequence typing (ST) 131. In addition, ESBL isolates show co-resistance to many of oral agents. Management of UTIs caused by ESBL and fluoroquinolone-resistant organisms is becoming increasingly challenging to treat outside of the hospital setting with clinicians having to resort to intravenous agents. The aim of this study was to assess the prevalence of ESBL phenotypes and genotypes among UTI isolates of E. coli collected in the US during 2017 as well as the impact of co-resistance to oral agents such as the fluoroquinolones and trimethoprim-sulfamethoxazole. The national prevalence of ESBL phenotypes of E. coli was 15.7% and was geographically distributed across all nine Census regions. Levofloxacin and trimethoprim-sulfamethoxazole-resistance rates were ≥ 24% among all isolates and this co-resistance phenotype was considerably higher among isolates showing an ESBL phenotype (≥ 59.2%) and carrying blaCTX-M-15 (≥ 69.5%). The agents with the highest potency against UTI isolates of E. coli, including ESBL isolates showing cross-resistance across oral agents, were the intravenous carbapenems. The results of this study indicate that new oral options with the spectrum and potency similar to the intravenous carbapenems would address a significant unmet need for the treatment of UTIs in an era of emergence and clonal expansion of ESBL isolates resistant to several classes of antimicrobial agents, including oral options.

Klíčová slova:

Antibiotic resistance – Antibiotics – Antimicrobial resistance – Census – Genetic screens – Geographic distribution – Urinary tract infections


Zdroje

1. Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother. 2017;29(sup1):2–9. Epub 2017/12/23. doi: 10.1080/1120009X.2017.1380395 29271736

2. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother. 2002;46(8):2540–5. Epub 2002/07/18. doi: 10.1128/AAC.46.8.2540-2545.2002 12121930

3. Sader HS, Castanheira M, Flamm RK, Jones RN. Antimicrobial Activities of Ceftazidime-Avibactam and Comparator Agents against Gram-Negative Organisms Isolated from Patients with Urinary Tract Infections in U.S. Medical Centers, 2012 to 2014. Antimicrob Agents Chemother. 2016;60(7):4355–60. Epub 2016/04/27. doi: 10.1128/AAC.00405-16 27114273

4. Gupta K, Scholes D, Stamm WE. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA. 1999;281(8):736–8. Epub 1999/03/03. doi: 10.1001/jama.281.8.736 10052444

5. Morrill HJ, Morton JB, Caffrey AR, Jiang L, Dosa D, Mermel LA, et al. Antimicrobial Resistance of Escherichia coli Urinary Isolates in the Veterans Affairs Health Care System. Antimicrob Agents Chemother. 2017;61(5). Epub 2017/02/15. doi: 10.1128/AAC.02236-16 28193660

6. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20. Epub 2011/02/05. doi: 10.1093/cid/ciq257 21292654

7. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–66. Epub 2008/02/23. doi: 10.1016/S1473-3099(08)70041-0 18291338

8. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162–71. Epub 2001/04/03. doi: 10.1086/319757 11283805

9. Schwaber MJ, Navon-Venezia S, Schwartz D, Carmeli Y. High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2005;49(5):2137–9. Epub 2005/04/28. doi: 10.1128/AAC.49.5.2137-2139.2005 15855548

10. Morosini MI, Garcia-Castillo M, Coque TM, Valverde A, Novais A, Loza E, et al. Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother. 2006;50(8):2695–9. Epub 2006/07/28. doi: 10.1128/AAC.00155-06 16870760

11. Can F, Azap OK, Seref C, Ispir P, Arslan H, Ergonul O. Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis. 2015;60(4):523–7. Epub 2014/11/08. doi: 10.1093/cid/ciu864 25378460

12. Can F, Kurt-Azap O, Ispir P, Nurtop E, Seref C, Loclar I, et al. The clinical impact of ST131 H30-Rx subclone in urinary tract infections due to multidrug-resistant Escherichia coli. J Glob Antimicrob Resist. 2016;4:49–52. Epub 2016/07/21. doi: 10.1016/j.jgar.2015.10.006 27436393

13. Lewis JS 2nd, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51(11):4015–21. Epub 2007/08/29. doi: 10.1128/AAC.00576-07 17724160

14. Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of β-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent β-lactamase groups. Antimicrob Agents Chemother. 2014;58(2):833–8. Epub 2013/11/18. doi: 10.1128/AAC.01896-13 24247134

15. Johnson JR, Porter S, Thuras P, Castanheira M. The Pandemic H30 Subclone of Sequence Type 131 (ST131) as the Leading Cause of Multidrug-Resistant Escherichia coli Infections in the United States (2011–2012). Open Forum Infect Dis. 2017;4(2):ofx089. Epub 2017/06/24. 28638846

16. Pitout JD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res. 2017;6. Epub 2017/03/28. doi: 10.12688/f1000research.10609.1 28344773

17. Johnson JR, Thuras P, Johnston BD, Weissman SJ, Limaye AP, Riddell K, et al. The Pandemic H30 Subclone of Escherichia coli Sequence Type 131 Is Associated With Persistent Infections and Adverse Outcomes Independent From Its Multidrug Resistance and Associations With Compromised Hosts. Clin Infect Dis. 2016;62(12):1529–36. Epub 2016/03/31. doi: 10.1093/cid/ciw193 27025834

18. Tchesnokova V, Riddell K, Scholes D, Johnson JR, Sokurenko EV. The Uropathogenic Escherichia coli Subclone Sequence Type 131-H30 Is Responsible for Most Antibiotic Prescription Errors at an Urgent Care Clinic. Clin Infect Dis. 2019;68(5):781–7. Epub 2018/07/03. doi: 10.1093/cid/ciy523 29961840

19. Bouchillon SK, Badal RE, Hoban DJ, Hawser SP. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009–2011. Clin Ther. 2013;35(6):872–7. Epub 2013/04/30. doi: 10.1016/j.clinthera.2013.03.022 23623624

20. Kaiser RM, Castanheira M, Jones RN, Tenover F, Lynfield R. Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. 2013;76(3):356–60. Epub 2013/05/11. doi: 10.1016/j.diagmicrobio.2013.03.032 23659829

21. Sader HS, Castanheira M, Shortridge D, Mendes RE, Flamm RK. Antimicrobial Activity of Ceftazidime-Avibactam Tested against Multidrug-Resistant Enterobacteriaceae and Pseudomonas aeruginosa Isolates from U.S. Medical Centers, 2013 to 2016. Antimicrob Agents Chemother. 2017;61(11). Epub 2017/08/23. doi: 10.1128/AAC.01045-17 28827415

22. Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of beta-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis. 2019;6(Suppl 1):S69–S78. Epub 2019/03/22. doi: 10.1093/ofid/ofz004 30895217

23. Clinical Laboratory Standards Institute. M100-S18. Performance Standards for Antimicrobial Susceptibility Testing. 28th Edition. Wayne, Pennsulvania 2018.

24. Mendes RE, Rhomberg PR, Lister T, Cotroneo N, Rubio A, Flamm RK. Evaluation of Antimicrobial Effects of a New Polymyxin Molecule (SPR741) When Tested in Combination with a Series of beta-Lactam Agents Against a Challenge Set of Gram-Negative Pathogens. Microb Drug Resist. 2019. Epub 2019/10/10. doi: 10.1089/mdr.2019.0198 31596663

25. Castanheira M, Doyle TB, Mendes RE, Sader HS. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum beta-Lactamases from U.S. Hospitals. Antimicrob Agents Chemother. 2019;63(7). Epub 2019/05/16. doi: 10.1128/AAC.00160-19 31085510

26. Trautner BW. Fluoroquinolones for urinary tract infection and within-household spread of resistant Enterobacteriaceae: the smoking gun. Clin Microbiol Infect. 2018;24(9):929–30. Epub 2018/04/13. doi: 10.1016/j.cmi.2018.03.038 29649605

27. Stewardson AJ, Vervoort J, Adriaenssens N, Coenen S, Godycki-Cwirko M, Kowalczyk A, et al. Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: a multinational prospective cohort study. Clin Microbiol Infect. 2018;24(9):972–9. Epub 2018/01/15. doi: 10.1016/j.cmi.2017.12.026 29331548

28. Bidell MR, Palchak M, Mohr J, Lodise TP. Fluoroquinolone and Third-Generation-Cephalosporin Resistance among Hospitalized Patients with Urinary Tract Infections Due to Escherichia coli: Do Rates Vary by Hospital Characteristics and Geographic Region? Antimicrob Agents Chemother. 2016;60(5):3170–3. Epub 2016/03/02. doi: 10.1128/AAC.02505-15 26926640

29. Kumar D, Singh AK, Ali MR, Chander Y. Antimicrobial Susceptibility Profile of Extended Spectrum beta-Lactamase (ESBL) Producing Escherichia coli from Various Clinical Samples. Infect Dis (Auckl). 2014;7:1–8. Epub 2014/05/23. doi: 10.4137/IDRT.S13820 24847178

30. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A. 2014;111(15):5694–9. Epub 2014/04/08. doi: 10.1073/pnas.1322678111 24706808

31. Vimont S, Boyd A, Bleibtreu A, Bens M, Goujon JM, Garry L, et al. The CTX-M-15-producing Escherichia coli clone O25b: H4-ST131 has high intestine colonization and urinary tract infection abilities. PLoS One. 2012;7(9):e46547. Epub 2012/10/03. doi: 10.1371/journal.pone.0046547 23029548

32. Toval F, Kohler CD, Vogel U, Wagenlehner F, Mellmann A, Fruth A, et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J Clin Microbiol. 2014;52(2):407–18. Epub 2014/01/31. doi: 10.1128/JCM.02069-13 24478469

33. Schwartz DJ, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci U S A. 2013;110(39):15530–7. Epub 2013/09/05. doi: 10.1073/pnas.1315203110 24003161

34. Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001;32(11):1608–14. Epub 2001/05/08. doi: 10.1086/320532 11340533

35. Cottell JL, Webber MA. Experiences in fosfomycin susceptibility testing and resistance mechanism determination in Escherichia coli from urinary tract infections in the UK. J Med Microbiol. 2019;68(2):161–8. Epub 2018/12/14. doi: 10.1099/jmm.0.000901 30543320

36. Farrell DJ, Morrissey I, De Rubeis D, Robbins M, Felmingham D. A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect. 2003;46(2):94–100. Epub 2003/03/14. doi: 10.1053/jinf.2002.1091 12634070

37. Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31(2). Epub 2018/02/16. doi: 10.1128/CMR.00079-17 29444952


Článek vyšel v časopise

PLOS One


2019 Číslo 12