Swaying slower reduces the destabilizing effects of a compliant surface on voluntary sway dynamics

Autoři: Dimitrios A. Patikas aff001;  Anastasia Papavasileiou aff001;  Antonis Ekizos aff002;  Vassilia Hatzitaki aff004;  Adamantios Arampatzis aff002
Působiště autorů: School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece aff001;  Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany aff002;  Berlin School of Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany aff003;  School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226263


The ability to control weight shifting (voluntary sway) is a crucial factor for stability during standing. Postural tracking of an oscillating visual target when standing on a compliant surface (e.g. foam) is a challenging weight shifting task that may alter the stability of the system and the muscle activation patterns needed to compensate for the perturbed state. The purpose of this study was to examine the effects of surface stability and sway frequency on the muscle activation of the lower limb, during visually guided voluntary postural sway. Seventeen volunteers performed a 2-min voluntary sway task in the anterior-posterior direction following with their projected center of pressure (CoPAP) a periodically oscillating visual target on a screen. The target oscillated at a frequency of 0.25 Hz or 0.125 Hz, while the participants swayed on solid ground (stable surface) or on a foam pad (unstable surface), resulting in four experimental conditions. The electromyogram (EMG) of 13 lower limb muscles was measured and the target–CoPAP coupling was evaluated with coherence analysis, whereas the difference in the stability of the system between the conditions was estimated by the maximum Lyapunov exponent (MLE). The results showed that slower oscillations outperformed the faster in terms of coherence and revealed greater stability. On the other hand, unstable ground resulted in an undershooting of the CoPAP to the target and greater MLE. Regarding the EMG data, a decreased triceps surae muscle activation at the low sway frequency compared to the higher was observed, whereas swaying on foam induced higher activation on the tibialis anterior as well. It is concluded that swaying voluntarily on an unstable surface results in reduced CoPAP and joint kinematics stability, that is accomplished by increasing the activation of the distal leg muscles, in order to compensate for this perturbation. The reduction of the sway frequency limits the effect of the unstable surface, on the head and upper body, improves the temporal component of coherence between CoP and target, whereas EMG activity is decreased. These findings might have implications in rehabilitation programs.

Klíčová slova:

Ankles – Electromyography – Foams – Hip – Musculoskeletal system – Signal filtering – System instability – Butterworth filters


1. Taube W, Schubert M, Gruber M, Beck SC, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol 2006;101:420–9. doi: 10.1152/japplphysiol.01447.2005 16601305

2. Ozdemir RA, Contreras-Vidal JL, Paloski WH. Cortical control of upright stance in elderly. Mech Ageing Dev 2018;169:19–31. doi: 10.1016/j.mad.2017.12.004 29277586

3. Perry SD, McIlroy WE, Maki BE. The role of plantar cutaneous mechanoreceptor in the control of compensatory stepping reactions evoked by unpredictable multi-directional perturbation. Brain Res 2000;877:401–6. doi: 10.1016/s0006-8993(00)02712-8 10986360

4. Creath R, Kiemel T, Horak FB, Peterka RJ, Jeka J. A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett 2005;377:75–80. doi: 10.1016/j.neulet.2004.11.071 15740840

5. Bardy BG, Oullier O, Lagarde J, Stoffregen TA. On perturbation and pattern coexistence in postural coordination dynamics. J Mot Behav 2007;39:326–34. doi: 10.3200/JMBR.39.4.326-336 17664174

6. Anderson K, Behm DG. Trunk muscle activity increases with unstable squat movements. Can J Appl Physiol 2005;30:33–45. doi: 10.1139/h05-103 15855681

7. Hamed A, Bohm S, Mersmann F, Arampatzis A. Exercises of dynamic stability under unstable conditions increase muscle strength and balance ability in the elderly. Scand J Med Sci Sports 2018;28:961–71. doi: 10.1111/sms.13019 29154407

8. Horak FB, Hlavacka F. Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol 2001;86:575–85. doi: 10.1152/jn.2001.86.2.575 11495933

9. MacLellan MJ, Patla AE. Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp Brain Res 2006;173:521–30. doi: 10.1007/s00221-006-0399-5 16491406

10. Patel M, Fransson PA, Lush D, Gomez S. The effect of foam surface properties on postural stability assessment while standing. Gait Posture 2008;28:649–56. doi: 10.1016/j.gaitpost.2008.04.018 18602829

11. Hirase T, Inokuchi S, Matsusaka N, Okita M. Effects of a Balance Training Program Using a Foam Rubber Pad in Community-Based Older Adults. J Geriatr Phys Ther 2015;38:62–70. doi: 10.1519/JPT.0000000000000023 24978931

12. Page P. Sensorimotor training: A “global” approach for balance training. J Bodyw Mov Ther 2006;10:77–84. doi: 10.1016/J.JBMT.2005.04.006

13. Hung J-W, Chou C-X, Hsieh Y-W, Wu W-C, Yu M-Y, Chen P-C, et al. Randomized Comparison Trial of Balance Training by Using Exergaming and Conventional Weight-Shift Therapy in Patients With Chronic Stroke. Arch Phys Med Rehabil 2014;95:1629–37. doi: 10.1016/j.apmr.2014.04.029 24862764

14. Wu G, Chiang JH. The significance of somatosensory stimulations to the human foot in the control of postural reflexes. Exp Brain Res 1997;114:163–9. doi: 10.1007/pl00005616 9125462

15. Patel M, Fransson PA, Johansson R, Magnusson M. Foam posturography: Standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation. Exp Brain Res 2011;208:519–27. doi: 10.1007/s00221-010-2498-6 21120458

16. Furman JM. Role of posturography in the management of vestibular patients. Otolaryngol Neck Surg 1995;112:8–15. doi: 10.1016/S0194-59989570300-4 7816461

17. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Lueng PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 2013;381:778–82. doi: 10.1016/S0140-6736(12)61263-X.Video

18. Tucker MG, Kavanagh JJ, Morrison S, Barrett RS. What are the relations between voluntary postural sway measures and falls-history status in community-dwelling older adults? Arch Phys Med Rehabil 2010;91:750–8. doi: 10.1016/j.apmr.2010.01.004 20434613

19. Shumway-Cook A, Anson D, Haller S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients. Arch Phys Med Rehabil 1988;69:395–400. 3377664

20. Hamman RG, Mekjavic I, Mallinson AI, Longridge NS. Training effects during repeated therapy sessions of balance training using visual feedback. Arch Phys Med Rehabil 1992;73:738–44. 1642525

21. Hirvonen TP, Aalto H, Pyykkö I. Stability limits for visual feedback posturography in vestibular rehabilitation. Acta Otolaryngol Suppl 1997;529:104–7. doi: 10.3109/00016489709124096 9288284

22. Dault MC, de Haart M, Geurts ACHH, Arts IMPP, Nienhuis B. Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Hum Mov Sci 2003;22:221–36. doi: 10.1016/s0167-9457(03)00034-4 12967755

23. Lorenzo TM, Vanrenterghem J. Effects of increased anterior-posterior voluntary sway frequency on mechanical and perceived postural stability. Hum Mov Sci 2015;39:189–99. doi: 10.1016/j.humov.2014.11.012 25498287

24. Danion F, Duarte M, Grosjean M. Variability of reciprocal aiming movements during standing: The effect of amplitude and frequency. Gait Posture 2006;23:173–9. doi: 10.1016/j.gaitpost.2005.01.005 16399513

25. Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability. J Biomech 2005;38:1–8. doi: 10.1016/j.jbiomech.2004.03.025 15519333

26. Sofianidis G, Hatzitaki V, Grouios G, Johannsen L, Wing A. Somatosensory driven interpersonal synchrony during rhythmic sway. Hum Mov Sci 2012;31:553–66. doi: 10.1016/j.humov.2011.07.007 22742723

27. Coste A, Salesse RN, Gueugnon M, Marin L, Bardy BG. Standing or swaying to the beat: Discrete auditory rhythms entrain stance and promote postural coordination stability. Gait Posture 2018;59:28–34. doi: 10.1016/j.gaitpost.2017.09.023 28985578

28. Hermens HJ, Freriks B, Merletti R, Stegeman DF, Blok JH, Raw G, et al. European recommendations for surface electromyography. Enshede, The Netherlands: Roessingh Research and Development; 1999.

29. Ekizos A, Santuz A, Schroll A, Arampatzis A. The maximum Lyapunov exponent during walking and running: reliability assessment of different marker-sets. Front Physiol 2018;9:1101. doi: 10.3389/fphys.2018.01101 30197597

30. Ihlen EAF, van Schooten KS, Bruijn SM, Pijnappels M, van Dieën JH. Fractional stability of trunk acceleration dynamics of daily-life walking: toward a unified concept of gait stability. Front Physiol 2017;8:516. doi: 10.3389/fphys.2017.00516 28900400

31. Lyapunov AM. The general problem of the stability of motion. Int J Control 1992;55:531–4. doi: 10.1080/00207179208934253

32. Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng 2001;123:27–32. doi: 10.1115/1.1336798 11277298

33. England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait Posture 2007;25:172–8. doi: 10.1016/j.gaitpost.2006.03.003 16621565

34. Ekizos A, Santuz A, Arampatzis A. Transition from shod to barefoot alters dynamic stability during running. Gait Posture 2017;56:31–6. doi: 10.1016/j.gaitpost.2017.04.035 28482203

35. Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry from a time series. Phys Rev Lett 1980;45:712–6. doi: 10.1103/PhysRevLett.45.712

36. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986;33:1134–40. doi: 10.1103/PhysRevA.33.1134 9896728

37. Ekizos A, Santuz A, Arampatzis A. Short- and long-term effects of altered point of ground reaction force application on human running energetics. J Exp Biol 2018;221:jeb176719. doi: 10.1242/jeb.176719 29895679

38. Rosenstein MT, Collins JJ, De Luca CJ. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys D Nonlinear Phenom 1994;73:82–98. doi: 10.1016/0167-2789(94)90226-7

39. Pataky TC, Vanrenterghem J, Robinson MA. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. J Biomech 2015;48:1277–85. doi: 10.1016/j.jbiomech.2015.02.051 25817475

40. McCollum G, Leen TK. Form and exploration of mechanical stability limits in erect stance. J Mot Behav 1989;21:225–44. doi: 10.1080/00222895.1989.10735479 15136262

41. Loram ID, Maganaris CN, Lakie MD. Paradoxical muscle movement during postural control. Med Sci Sports Exerc 2009;41:198–204. doi: 10.1249/MSS.0b013e318183c0ed 19092688

42. Wang Y, Asaka T, Zatsiorsky VM, Latash ML. Muscle synergies during voluntary body sway: Combining across-trials and within-a-trial analyses. Exp Brain Res 2006;174:679–93. doi: 10.1007/s00221-006-0513-8 16710681

43. Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM. Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 2003;152:281–92. doi: 10.1007/s00221-003-1574-6 12904934

44. Nashner LM, McCollum G. The organization of human postural movements: A formal basis and experimental synthesis. Behav Brain Sci 1985;8:135. doi: 10.1017/S0140525X00020008

45. Torres-Oviedo G, Ting LH. Muscle synergies characterizing human postural responses. J Neurophysiol 2007;98:2144–56. doi: 10.1152/jn.01360.2006 17652413

46. Chvatal SA, Ting LH. Common muscle synergies for balance and walking. Front Comput Neurosci 2013;7:1–14. doi: 10.3389/fncom.2013.00001

47. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction on balance. Phys Ther 1986;66:1545–50. doi: 10.1093/ptj/66.10.1548 3763708

48. Schut IM, Engelhart D, Pasma JH, Aarts RGKM, Schouten AC. Compliant support surfaces affect sensory reweighting during balance control. Gait Posture 2017;53:241–7. doi: 10.1016/j.gaitpost.2017.02.004 28231556

49. Keshner EA, Woollacott MH, Debu B. Neck, trunk and limb muscle responses during postural perturbations in humans. Exp Brain Res 1988;71:455–66. doi: 10.1007/bf00248739 3416963

50. Donath L, Kurz E, Roth R, Zahner L, Faude O. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults. Maturitas 2016;91:60–8. doi: 10.1016/j.maturitas.2016.05.010 27451322

51. Baratta R V, Solomonow MR, Zhou B-H, Letson D, Chuinard R, D’Ambrosia RD. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 1988;16:113–22. doi: 10.1177/036354658801600205 3377094

52. Slobounov SM, Moss SA, Slobounova ES, Newell KM. Aging and time to instability in posture. J Gerontol A Biol Sci Med Sci 1998;53:B71–8. doi: 10.1093/gerona/53a.1.b71 9467425

53. Slobounov SM, Slobounova ES, Newell KM. Virtual Time-to-Collision and Human Postural Control. J Mot Behav 1997;29:263–81. doi: 10.1080/00222899709600841 12453785

54. Riccio GE, Stoffregen TA. Affordances as constraints on the control of stance. Hum Mov Sci 1988;7:265–300.

55. Danion F, Duarte M, Grosjean M. Fitts’ law in human standing: The effect of scaling. Neurosci Lett 1999;277:131–3. doi: 10.1016/s0304-3940(99)00842-3 10624827

56. Duarte M, Freitas SMSF. Speed-Accuracy Trade-Off in Voluntary Postural Movements. Motor Control 2005;9:180–96. doi: 10.1123/mcj.9.2.180 15995258

57. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 1954;47:381–91. doi: 10.1037/h0055392 13174710

58. Biewener AA, Daley MA. Unsteady Locomotion: integrating muscle function with whole body dynamics and neuromuscular control. J Exp Biol 2007;210:2949–60. doi: 10.1242/jeb.005801 17704070

59. Santuz A, Ekizos A, Eckardt N, Kibele A, Arampatzis A. Challenging human locomotion: stability and modular organisation in unsteady conditions. Sci Rep 2018;8:2740. doi: 10.1038/s41598-018-21018-4 29426876

60. Azizi E, Brainerd EL, Roberts TJ. Variable gearing in pennate muscles. Proc Natl Acad Sci U S A 2008;105:1745–50. doi: 10.1073/pnas.0709212105 18230734

61. Ihara H, Nakayama A. Dynamic joint control training for knee ligament injuries. Am J Sports Med 1986;14:309–15. doi: 10.1177/036354658601400412 3728783

62. Beard DJ, Dodd CA, Trundle HR, Simpson AH. Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. J Bone Joint Surg Br 1994;76:654–9. 8027158

63. Slijper H, Latash ML. The effects of instability and additional hand support on anticipatory postural adjustments in leg, trunk, and arm muscles during standing. Exp Brain Res 2000;135:81–93. doi: 10.1007/s002210000492 11104130

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden