Rats’ (Rattus norvegicus) tool manipulation ability exceeds simple patterned behavior


Autoři: Akane Nagano aff001
Působiště autorů: Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan aff001;  Faculty of Psychology, Doshisha University, Kyotanabe, Japan aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226569

Souhrn

Many studies have attempted to shed light on the ability of non-human animals to understand physical causality by investigating their tool-use behavior. This study aimed to develop a tool-manipulation task for rodents in which the subjects could not manipulate the tool in the direction of the reward by simple patterned behavior. Eight rats had to use a rake-shaped tool to obtain a food reward placed beyond their reach. During the training, the rats never moved the rakes laterally to obtain the reward. However, in the positional discrimination test, the rake was placed at the center of the experimental apparatus, and the reward was positioned on either the left or right side of the rake. Interestingly, this test indicated that some rats were able to manipulate the rake toward the reward without relying on a patterned behavior acquired during the training. These results suggested that rats have the primitive ability to understand causal relationships in the physical environment. The findings indicate that rats can potentially serve as an animal model to investigate the mechanisms of evolution and development of the understanding of physical causality in humans.

Klíčová slova:

Animal behavior – Animal evolution – Animal performance – Learning – Nose – Rats – Rodents – Acrylics


Zdroje

1. Penn DC, Povinelli DJ. Causal cognition in human and nonhuman animals: a comparative, critical review. Ann Rev Psychol. 2007; 58: 97–118. doi: 10.1146/annurev.psych.58.110405.085555 17029564

2. Visalberghi E, Tomasello M. Primate causal understanding in the physical and psychological domains. Behav Process. 1998; 42: 189–203. doi: 10.1016/S0376-6357(97)00076-4

3. Nagano A, Aoyama K. Tool-use by rats (Rattus norvegicus): Tool-choice based on tool features. Anim Cogn. 2017a; 20: 199–213. doi: 10.1007/s10071-016-1039-5 27679521

4. Nagano A, Aoyama K. Tool manipulation by rats (Rattus norvegicus) according to the position of food. Sci Rep. 2017b; 7: 5960. doi: 10.1038/s41598-017-06308-7 28729626

5. Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A. Tool use specific neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS One. 2013; 8: e58649. doi: 10.1371/journal.pone.0058649 23516527

6. Okanoya K, Tokimoto N, Kumazawa N, Hihara S, Iriki A. Tool-use training in a species of rodent: the emergence of an optimal motor strategy and functional understanding. PLoS One. 2008; 3: e1860. doi: 10.1371/journal.pone.0001860 18365015

7. Mazur JE. Learning and behavior. 8th ed. New York: Routledge; 2016.

8. Snoddy GS. An experimental analysis of a case of trial and error learning in the human subject. Psychol Monogr. 1920; 28: i–81.

9. Bentley-Condit VK, Smith EO. Animal tool use: current definitions and an updated comprehensive catalog. Behaviour. 2010; 147: 185–221. doi: 10.1163/000579509X12512865686555

10. Tolman EC. The acquisition of string-pulling by rats: conditioned response or sign-gestalt? Psychol Rev. 1937; 44: 195–211. doi: 10.1037/h0059293

11. Hallgren KA. Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in Quantitative Methods for Psychology. 2012; 8: 23–34. doi: 10.20982/tqmp.08.1.p023 22833776

12. Santos LR, Miller CT, Hauser MD. Representing tools: how two non-human primate species distinguish between the functionally relevant and irrelevant features of a tool. Anim Cogn. 2003; 6: 269–281. doi: 10.1007/s10071-003-0171-1 12736800

13. Takagi S, Arahori M, Chijiiwa H, Tsuzuki M, Hataji Y, Fujita K. There’s no ball without noise: cats’ prediction of an object from noise. Anim Cogn. 2016; 19: 1043–1047. doi: 10.1007/s10071-016-1001-6 27299293

14. Davidson G, Miller R, Loissel E, Cheke LG, Clayton NS. The development of support intuitions and object causality in juvenile Eurasian jays (Garrulus glanadarius). Sci Rep. 2017; 7: 40062. doi: 10.1038/srep40062 28053306

15. Tia B, Viaro R, Fadiga L. Tool-use training temporarily enhances cognitive performance in long-tailed macaques (Macaca fascicularis). Anim Cogn. 2018; 21: 365–378. doi: 10.1007/s10071-018-1173-3 29502167

16. Fagard J, Rat-Fischer L, O’Regan JK. The emergence of use of a rake-like tool: a longitudinal study in human infants. Front Psychol. 2014; 5: 491. doi: 10.3389/fpsyg.2014.00491 24904504

17. Petkovic M, Rat-Fischer L, Fagard J. The emergence of tool use in preterm infants. Front Psychol. 2016; 7: 1104. doi: 10.3389/fpsyg.2016.01104 27486429

18. Rat-Fischer L, O’Regan JK, Fagard J. The emergence of tool use during the second year of life. J Exp Child Psycol. 2012; 113: 440–446. doi: 10.1016/j.jecp.2012.06.001 22789968

19. Rat-Fischer L, O’Regan JK, Fagard J. Handedness in infants’ tool use. Dev Psychobiol. 2013; 55: 860–868. doi: 10.1002/dev.21078 22949283

20. Hihara S, Obayashi S, Tanaka M, Iriki A. Rapid learning of sequential tool use by macaque monkeys. Physiol Behav. 2003; 78: 427–434. doi: 10.1016/s0031-9384(02)01006-5 12676278

21. Cheng K, Byrne RW. Why human environments enhance animal capacities to use objects: evidence from keas (Nestor notabilis) and apes (Gorilla gorilla, Pan paniscus, Pongo abelii, Pongo pygmaeus). J Comp Psychol. 2018; 132: 419–426. doi: 10.1037/com0000121 30024236

22. Hauser MD. Artifactual kinds and functional design features: what a primate understands without language. Cognition. 1997; 64: 285–308. doi: 10.1016/s0010-0277(97)00028-0 9426504

23. Hauser M, Pearson H, Seelig D. Ontogeny of tool use in cottontop tamarins, Saguinus oedipus: innate recognition of functionally relevant features. Anim Behav. 2002; 64: 299–311. doi: 10.1006/anbe.2002.3068

24. Hihara S, Notoya T, Tanaka M, Ichinose S, Ojima H, Obayashi S, et al. Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia. 2006; 44: 2636–2646. doi: 10.1016/j.neuropsychologia.2005.11.020 16427666

25. Hihara S, Yamada H, Iriki A, Okanoya K. Spontaneous vocal differentiation of coo-calls for tools and food in Japanese monkeys. Neurosci Res. 2003; 45: 383–389. doi: 10.1016/s0168-0102(03)00011-7 12657451

26. Iriki A, Tanaka M, Iwamura Y. Coding of modified body schema during tool use by macaque postcentral neurons. Neuroreport. 1996; 7: 2325–2330. doi: 10.1097/00001756-199610020-00010 8951846

27. Ishibashi H, Hihara S, Iriki A. Acquisition and development of monkey tool-use: behavioral and kinematic analyses. Can J Physiol Pharmacol. 2000; 78: 958–966. doi: 10.1139/cjpp-78-11-958 11100944

28. Ishibashi H, Hihara S, Takahashi M, Heike T, Yokota T, Iriki A. Tool-use learning selectively induces expression of brain-derived neurotrophic factor, its receptor trkB, and neurotrophin 3 in the intraparietal multisensorycortex of monkeys. Cogn Brain Res. 2002; 14: 3–9. doi: 10.1016/S0926-6410(02)00056-3

29. Obayashi S, Suhara T, Kawabe K, Okauchi T, Maeda J, Akine Y, et al. Functional brain mapping of monkey tool use. Neuroimage. 2001; 14: 853–861. doi: 10.1006/nimg.2001.0878 11554804

30. Quallo MM, Kraskov A, Lemon RN. The activity of primary motor cortex corticospinal neurons during tool use by macaque monkeys. J Neurosci. 2012; 32: 17351–17364. doi: 10.1523/JNEUROSCI.1009-12.2012 23197726

31. Quallo MM, Price J, Ueno K, Asamizuka K, Cheng K, Lemon RN, et al. Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci USA. 2009; 106: 18379–18384. doi: 10.1073/pnas.0909751106 19820167

32. Santos LR, Mahajan N, Barnes JL. How prosimian primates represent tools: experiments with two lemur species (Eulemur fulvus and Lemur catta). J Comp Psychol. 2005; 119: 394–403. doi: 10.1037/0735-7036.119.4.394 16366773

33. Santos LR, Pearson HM, Spaepen GM, Tsao F, Hauser MD. Probing the limits of tool competence: experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). Anim Cogn. 2006; 9: 94–109. doi: 10.1007/s10071-005-0001-8 16341524

34. Santos LR, Rosati A, Sproul C, Spaulding B, Hauser MD. Means-means-end tool choice in cotton-top tamarins (Saguinus oedipus): finding the limits on primates’ knowledge of tools. Anim Cogn. 2005; 8: 236–246. doi: 10.1007/s10071-004-0246-7 15668762

35. Yamazaki Y, Echigo C, Saiki M, Inada M, Watanabe S, Iriki A. Tool-use learning by common marmosets (Callithrix jacchus). Exp Brain Res. 2011; 213: 63–71. doi: 10.1007/s00221-011-2778-9 21713504

36. Yamazaki Y, Hikishima M, Saiki M, Inada M, Sasaki E, Lemon C, et al. Neural changes in the primate brain correlated with the evolution of complex motor skills. Sci Rep. 2016; 6: 31084. doi: 10.1038/srep31084 27498966

37. Yamazaki Y, Kurihara Y, Iriki A, Watanabe S. Changes in the repertoire of tool-using behaviour in Japanese monkeys. CARLS Series of Advanced Study of Logic and Sensibility. 2009; 3: 29–37.

38. Yamazaki Y, Namba H, Iriki A. Acquisition of an externalized eye by Japanese monkeys. Exp Brain Res. 2009; 194: 131–142. doi: 10.1007/s00221-008-1677-1 19139869

39. GOV.UK. Home Office. 2016. Annual statistics of scientific procedures on living animals Great Britain 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/627284/annual-statistics-scientific-procedures-living-animals-2016.pdf


Článek vyšel v časopise

PLOS One


2019 Číslo 12