Inflammatory mediators and lung abnormalities in HIV: A systematic review


Autoři: Breanne M. Head aff001;  Ruochen Mao aff001;  Yoav Keynan aff001;  Zulma Vanessa Rueda aff001
Působiště autorů: Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada aff001;  Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Antioquia, Colombia aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226347

Souhrn

HIV and pneumonia infections have both been shown to negatively impact lung function. However, evidence of the role of inflammation on lung dysfunction in HIV and pneumonia co-infected individuals remains limited. We aimed to systematically review the association of inflammatory markers and lung abnormalities in HIV and pneumonia co-infected individuals. This systematic review was registered with the International Prospective Register of Systematic Reviews on August 15, 2017 (registration number CRD42017069254) and used 4 databases (Cochrane Central Register of Controlled Trials, PubMed Central, Clinical Trials.gov and Google Scholar). All clinical trial, observational, and comparative studies targeting adult (> 18 years old) populations with HIV, pneumonia, or both, that report on immune response (cytokine, chemokine, or biomarker), and lung abnormality as an outcome were eligible. Data selection, risk of bias and extraction were performed independently by 2 blinded reviewers. Due to heterogeneity among the articles, a qualitative synthesis was performed. Our search strategy identified 4454 articles of which, 7 met our inclusion criteria. All of the studies investigated the ability of circulating biomarkers to predict lung damage in HIV. None of the articles included patients with both HIV and pneumonia, nor pneumonia alone. Markers of inflammation (IL-6, TNF-α, CRP), innate defense (cathelicidin), monocyte and macrophage activation (sCD14, sCD163 and, IL-2sRα), endothelial dysfunction (ET-1) and general immune health (CD4/CD8 ratio) were associated with lung abnormalities in HIV. This review highlights the lack of available information regarding the impact of inflammatory mediators on lung function in HIV and pneumonia populations, therefore opportunities to prevent lung damage with available anti-inflammatory treatment or to investigate new ones still remain.

Klíčová slova:

Biomarkers – Cytokines – Emphysema – Enzyme-linked immunoassays – Inflammation – Pneumonia – Pulmonary function


Zdroje

1. Nakagawa F, May M, Phillips A. Life expectancy living with HIV: Recent estimates and future implications. Curr Opin Infect Dis. 2013;26(1):17–25. doi: 10.1097/QCO.0b013e32835ba6b1 23221765

2. Cilloniz C, Torres A, Polverino E, Gabarrus A, Amaro R, Moreno E, et al. Community-acquired lung respiratory infections in HIV-infected patients: Microbial aetiology and outcome. Eur Respir J. 2014;43(6):1698–708. doi: 10.1183/09031936.00155813 24525448

3. Head BM, Trajtman A, Rueda Z V, Vélez L, Keynan Y. Atypical bacterial pneumonia in the HIV-infected population. Pneumonia. 2017;9(12):1–7.

4. Brune KA, Ferreira F, Mandke P, Chau E, Aggarwal NR, D’alessio FR, et al. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation. PLoS One. 2016;11(3):e0149679. doi: 10.1371/journal.pone.0149679 26930653

5. Agostini C, Semenzato G. Immunologic effects of HIV in the lung. Clin Chest Med. 1996;17(4):633–45. doi: 10.1016/s0272-5231(05)70337-3 9016369

6. Kristoffersen US, Lebech A-M, Mortensen J, Gerstoft J, Gutte H, Kjaer A. Changes in lung function of HIV-infected patients: A 4·5-year follow-up study. Clin Physiol Funct Imaging. 2012;32(4):288–95. doi: 10.1111/j.1475-097X.2012.01124.x 22681606

7. Saksena NK, Wang B, Zhou L, Soedjono M, Shwen Ho Y, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS—Res Palliat Care. 2010;2:103–22.

8. Mascolini M. Faster lung function decline with HIV linked to sCD14 activation marker. Conf Reports NATAP [Internet]. 2014; https://www.thieme-connect.com/DOI/DOI?10.1055/s-2004-822307

9. Crothers K, Thompson BW, Burkhardt K, Morris A, Flores SC, Diaz PT, et al. HIV-associated lung infections and complications in the era of combination antiretroviral therapy. Proc Am Thorac Soc. 2011;8:275–81. doi: 10.1513/pats.201009-059WR 21653528

10. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-y: an overview of signals, mechanisms and functions. J Leukoc Biol [Internet]. 2004;75(February):163–89. Available from: http://www.jleukbio.org/content/75/2/163.long%0A http://www.ncbi.nlm.nih.gov/pubmed/14525967

11. Wang RJ, Moore J, Moisi D, Chang EG, Byanyima P, Kaswabuli S, et al. HIV infection is associated with elevated biomarkers of immune activation in Ugandan adults with pneumonia. PLoS One. 2019;14(5):1–14.

12. Ronit A, Lundgren J, Shoaib A, Benfield T, Roen A, Mocroft A, et al. Airflow limitation in people living with HIV and matched uninfected controls. Thorax. 2018;0:1–8.

13. Gingo MR, Nouraie M, Kessinger CJ, Greenblatt RM, Huang L, Kleerup EC, et al. Decreased lung function and all-cause mortality in HIV-infected individuals. Ann Am Thorac Soc. 2018;15(2):192–9. doi: 10.1513/AnnalsATS.201606-492OC 29313714

14. Drummond MB, Merlo CA, Astemborski J, Marshall M, Kisalu A, Mcdyer JF, et al. The effect of HIV infection on longitudinal lung function decline among injection drug users: A prospective cohort. AIDS. 2013;27(8):1303–11. doi: 10.1097/QAD.0b013e32835e395d 23299176

15. Crothers K, Rodriguez C V, Wongtrakool C, Hoo GS, Kim J, Brown ST, et al. Association of HIV infection and immune activation with decline in lung function. Top Antivir Med. 2014;22:397–8.

16. Drummond MB, Lambert AA, Hussien AF, Lin CT, Merlo CA, Wise RA, et al. HIV infection is independently associated with increased CT scan lung density. Acad Radiol. 2017;24(2):137–45. doi: 10.1016/j.acra.2016.09.019 27876271

17. Popescu I, Drummond MB, Gama L, Lambert A, Hoji A, Coon T, et al. HIV suppression restores the lung mucosal CD4+T-cell viral immune response and resolves CD8+T-cell alveolitis in patients at risk for HIV-associated chronic obstructive pulmonary disease. J Infect Dis. 2016;214(10):1520–30. doi: 10.1093/infdis/jiw422 27613775

18. Bigna JJ, Kenne AM, Asangbeh SL, Sibetcheu AT. Prevalence of chronic obstructive pulmonary disease in the global population with HIV: A systematic review and meta-analysis. Lancet Glob Heal. 2018;6:e193–202.

19. Drummond MB, Kirk GD. HIV-associated obstructive lung diseases: Insights and implications for the clinician. Lancet Respir Med. 2014;2(7):583–92. doi: 10.1016/S2213-2600(14)70017-7 24831854

20. Rendon A, Rendon-Ramirez EJ, Rosas-Taraco AG. Relevant Cytokines in the Management of Community-Acquired Pneumonia. Curr Infect Dis Rep. 2016;18(3):1–9.

21. Fernandez-Botran R, Uriarte SM, Arnold FW, Rodriguez-Hernandez L, Rane MJ, Peyrani P, et al. Contrasting inflammatory responses in severe and non-severe community-acquired pneumonia. Inflammation. 2014;37(4):1158–66. doi: 10.1007/s10753-014-9840-2 24557760

22. Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology Eur Respir Rev [Internet]. 2018;27(147):170077. Available from: http://err.ersjournals.com/lookup/doi/10.1183/16000617.0077-2017 29491034

23. Ralph AP, Kenangalem E, Waramori G, Pontororing GJ, Sandjaja Tjitra E,, et al. High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: Under-recognised phenomena. PLoS One. 2013;8(11):1–11.

24. Rhee CK, Yoo KH, Lee JH, Park MJ, Kim WJ, Park YB, et al. Clinical characteristics of patients with tuberculosis-destroyed lung. 2013;17(August 2012):67–75.

25. Gislason T, Gudnason V, Benediktsdottir B, Olafsson I, Aspelund T, Thjodleifsson B, et al. Persistent Chlamydia Pneumoniae serology is related to decline in lung function in women but not in men. Effect of persistent Chlamydia pneumoniae infection on lung function. BMC Pulm Med. 2010;10.

26. George MP, Kannass M, Huang L, Sciurba FC, Morris A. Respiratory symptoms and airway obstruction in HIV-infected subjects in the HAART era. PLoS One. 2009;4(7):1–7.

27. Nelsing S, Jensen B, Backer V. Persistent reduction in lung function after Pneumocystis carinii pneumonia in AIDS patients. Scand J Infect Dis [Internet]. 1995;27(4):351–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8658069

28. Morris AM, Huang L, Bacchetti P, Turner J, Hopewell PC, Wallace JM, et al. Permanent declines in pulmonary function following pneumonia in Human Immunodeficiency Virus-infected persons. Am J Respir Crit Care Med. 2000;162:612–6. doi: 10.1164/ajrccm.162.2.9912058 10934095

29. Pai M, Denkinger CM, Kik S V., Rangaka MX, Zwerling A, Oxlade O, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20. doi: 10.1128/CMR.00034-13 24396134

30. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 19621072

31. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis (PRISMA) protocols 2015 checklist. Br Med J. 2015;349(Jan02 1):g7647.

32. Halpern SH, Douglas MJ. Jadad scale for reporting randomized controlled trials. Evidence-based Obstet Anesth. 2005;237–8.

33. Wells G, Shea B, O’Connell D, Peterson J. Newcastle-Ottawa Quality Assessment Scale. In: Coding Manual for Cohort Studies [Internet]. p. 1–2. http://www.ohri.ca/programs/clinical_epidemiology/nosgen.pdf

34. National Institute of Health. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies—NHLBI, NIH [Internet]. 2014. p. 1–4. https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/cohort

35. Attia EF, Akgün KM, Wongtrakool C, Goetz MB, Rodriguez-Barradas MC, Rimland D, et al. Increased Risk of Radiographic Emphysema in HIV Is Associated With Elevated Soluble CD14 and Nadir CD4. Chest [Internet]. 2014;146(6):1543–53. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251616/pdf/chest_146_6_1543.pdf

36. Lambert AA, Kirk GD, Astemborski J, Neptune ER, Mehta SH, Wise RA, et al. A cross sectional analysis of the role of the antimicrobial peptide cathelicidin in lung function impairment within the ALIVE cohort. PLoS One. 2014;9(4):e95099. doi: 10.1371/journal.pone.0095099 24743155

37. Triplette M, Attia EF, Akgün KM, Hoo GWS, Freiberg MS, Butt AA, et al. A low peripheral blood CD4/CD8 ratio is associated with pulmonary emphysema in HIV. PLoS One. 2017;12(1):1–15.

38. Fitzpatrick ME, Nouraie M, Gingo MR, Camp D, Kessinger CJ, Sincebaugh JB, et al. Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. Aids. 2016;30(9):1327–39. doi: 10.1097/QAD.0000000000001092 26990629

39. Fitzpatrick ME, Singh V, Bertolet M, Lucht L, Kessinger C, Michel J, et al. Relationships of pulmonary function, inflammation, and T-cell activation and senescence in an HIV-infected cohort. AIDS. 2014;28(17):2505–15. doi: 10.1097/QAD.0000000000000471 25574956

40. North CM, Muyanja D, Kakuhikire B, Tsai AC, Tracy RP, Hunt PW, et al. Systemic inflammation, immune activation, and impaired lung function among people living with HIV in rural Uganda. J Acquir Immune Defic Syndr [Internet]. 2018;78(5):543–8. Available from: http://dx.doi.org/10.1097/QAI.0000000000001711

41. Crothers K, Petrache I, Wongtrakool C, Lee PJ, Schnapp LM, Gharib SA. Widespread activation of immunity and pro-inflammatory programs in peripheral blood leukocytes of HIV-infected patients with impaired lung gas exchange. Physiol Rep. 2016;4(8):1–10.

42. Golpe R, Martín-Robles I, Sanjuán-López P, Pérez-de-Llano L, González-Juanatey C, López-Campos JL, et al. Differences in systemic inflammation between cigarette and biomass smoke-induced COPD. Int J COPD. 2017;12:2639–46.

43. Crothers K, Butt AA, Gibert CL, Rodriguez-Barradas MC, Crystal S, Justice AC. Increased COPD among HIV-positive compared to HIV-negative veterans. Chest. 2006;130(5):1326–33. doi: 10.1378/chest.130.5.1326 17099007

44. O’Neal WK, Anderson W, Basta PV., Carretta EE, Doerschuk CM, Barr RG, et al. Comparison of serum, EDTA plasma and P100 plasma for luminex-based biomarker multiplex assays in patients with chronic obstructive pulmonary disease in the SPIROMICS study. J Transl Med. 2014;12(1):1–9.

45. Vitenberga Z, Pilmane M. Inflammatory, anti-inflammatory and regulatory cytokines in relatively healthy lung tissue as an essential part of the local immune system. Biomed Pap. 2017;161(2):164–73.

46. Esposito S, Droghetti R, Bosis S, Claut L, Marchisio P, Principi N. Cytokine secretion in children with acute Mycoplasma pneumoniae infection and wheeze. Pediatr Pulmonol. 2002;34(2):122–7. doi: 10.1002/ppul.10139 12112778

47. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF α in pulmonary pathophysiology. Respir Res. 2006;7(125):1–9.

48. Antunes G, Evans SA, Lordan JL, Frew AJ. Systemic cytokine levels in community-acquired pneumonia and their association with disease severity. Eur Respir J. 2002;20(4):990–5. doi: 10.1183/09031936.02.00295102 12412694

49. Paats MS, Bergen IM, Hanselaar WEJJ, Van Zoelen ECG, Hoogsteden HC, Hendriks RW, et al. Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia. Eur Respir J. 2013;41(6):1378–85. doi: 10.1183/09031936.00060112 23258791

50. Liu R-M. Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxidants Redox Signal. 2008;10(2):303–19.

51. Zhang K, Gharaee-Kermani M, McGarry B, Remick D, Phan SH. TNF-a-Medicated Lung Cytokine Networking and Eosinophil Recruitment in Pulmonary Fibrosis. J Immunol. 1997;158(2):954–9. 8993016

52. Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5(October):1–12.

53. Marcos V, Latzin P, Hector A, Sonanini S, Hoffmann F, Lacher M, et al. Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases. Respir Res. 2010;11:1–13. doi: 10.1186/1465-9921-11-1 20047687

54. Quon BS, Ngan DA, Wilcox PG, Paul Man SF, Sin DD. Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS One. 2014;9(2):e89341. doi: 10.1371/journal.pone.0089341 24586701

55. Anas A, Poll T Van Der, Vos AF De. Role of CD14 in lung inflammation and infection. Crit Care. 2010;14(209):1–8.

56. Dessing MC, Knapp S, Florquin S, De Vos AF, Van Der Poll T. CD14 facilitates invasive respiratory tract infection by Streptococcus pneumoniae. Am J Respir Crit Care Med. 2007;175(6):604–11. doi: 10.1164/rccm.200606-824OC 17185649

57. Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90. doi: 10.1093/infdis/jiq118 21252259

58. Castley A, Williams L, James I, Guelfi G, Berry C, Nolan D. Plasma CXCL10, sCD163 and sCD14 levels have distinct associations with antiretroviral treatment and cardiovascular disease risk factors. PLoS One. 2016;11(6):1–14.

59. CASTILLO-MANCILLA JR, MORROW M, BOUM Y, BYAKWAGA H, HABERER JE, MARTIN JN, et al. Higher ART adherence is associated with lower systemic inflammation in treatment-naïve Ugandans who achieve virologic suppression. JAIDS J Acquir Immune Defic Syndr. 2018;1.

60. Møller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, Pedersen SS, et al. Macrophage serum markers in pneumococcal bacteremia: Prediction of survival by soluble CD163. Crit Care Med. 2006;34(10):2561–6. doi: 10.1097/01.CCM.0000239120.32490.AB 16915112

61. Polcyn-Adamczak M, Niemir ZI. Cathelicidin–Its Structure, Function and the Role in Autoimmune Diseases. Adv Cell Biol. 2014;4(2):83–96.

62. Seiler F, Bals R, Beisswenger C. Function of Antimicrobial Peptides in Lung Innate Immunity. In: Harder J, Schröder J-M, editors. Antimicrobial Peptides: Role in Human Health and Disease [Internet]. Springer International Publishing Switzerland; 2016. p. 33–52. http://link.springer.com/10.1007/978-3-319-24199-9

63. Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun. 2008;76(3):935–41. doi: 10.1128/IAI.01218-07 18160480

64. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci. 1998;95(16):9541–6. doi: 10.1073/pnas.95.16.9541 9689116

65. Nijnik A, Pistolic J, Filewod NCJ, Hancock REW. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 2012;4(4):377–86. doi: 10.1159/000335901 22516952

66. Hoheisel G, Zheng L, Teschler H, Striz I, Costabel U. Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest. 1995;108(6):1614–6. doi: 10.1378/chest.108.6.1614 7497770

67. Gingo MR, Morris A. Pathogenesis of HIV and the lung. Curr HIV/AIDS Rep. 2013;10(1):42–50. doi: 10.1007/s11904-012-0140-x 23079728

68. Fitzpatrick M, Singh V, Bertolet M, Lucht L, Kessinger C, Michel J, et al. Relationships of pulmonary function, inflammation, and T-cell activation and senescence in an HIV-infected cohort. AIDS. 2014;28(17):2505–15. doi: 10.1097/QAD.0000000000000471 25574956

69. Fitzpatrick ME, Nouraie M, Gingo MR, Camp D, Kessinger CJ, Sincebaugh JB, et al. Novel relationships of markers of monocyte activation and endothelial dysfunction with pulmonary dysfunction in HIV-infected persons. AIDS. 2016;30(9):1327–39. doi: 10.1097/QAD.0000000000001092 26990629

70. Li Y, Nouraie SM, Kessinger C, Weinman R, Huang L, Greenblatt RM, et al. Factors Associated With Progression of Lung Function Abnormalities in HIV- Infected Individuals. J Acquir Immune Defic Syndr. 2018;79(4):501–9. doi: 10.1097/QAI.0000000000001840 30142142

71. Gupte AN, Wong ML, Msandiwa R, Barnes GL, Golub J, Chaisson RE, et al. Factors associated with pulmonary impairment in HIV-infected South African adults. PLoS One [Internet]. 2017;12(9):1–15. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L618265558

72. Kunisaki KM, Niewoehner DE, Collins G, Aagaard B, Atako NB, Bakowska E, et al. Pulmonary eff ects of immediate versus deferred antiretroviral therapy in HIV-positive individuals: a nested substudy within the multicentre, international, randomised, controlled Strategic Timing of Antiretroviral Treatment (START) trial. Lancet. 2016;4(December):980–9.

73. Chand HS, Vazquez-Guillamet R, Royer C, Rudolph K, Mishra N, Singh SP, et al. Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques. J Clin Invest. 2018;128(12):5428–33. doi: 10.1172/JCI121935 30277472

74. Calbo E, Alsina M, Rodríguez-Carballeira M, Lite J, Garau J. The impact of time on the systemic inflammatory response in pneumococcal pneumonia. Eur Respir J. 2010;35(3):614–8. doi: 10.1183/09031936.00052709 19608588

75. Fernández-Serrano S, Dorca J, Coromines M, Carratalà J, Gudiol F, Manresa F. Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia. Clin Diagn Lab Immunol. 2003;10(5):813–20. doi: 10.1128/CDLI.10.5.813-820.2003 12965910

76. Calbo E, Alsina M, Rodríguez-Carballeira M, Lite J, Garau J. Systemic expression of cytokine production in patients with severe pneumococcal pneumonia: Effects of treatment with a β-lactam versus a fluoroquinolone. Antimicrob Agents Chemother. 2008;52(7):2395–402. doi: 10.1128/AAC.00658-07 18426893


Článek vyšel v časopise

PLOS One


2019 Číslo 12