Robust effect of metabolic syndrome on major metabolic pathways in the myocardium

Autoři: Maryam Karimi aff001;  Vasile I. Pavlov aff002;  Olivia Ziegler aff001;  Nivedita Sriram aff001;  Se-Young Yoon aff001;  Vahid Agbortoko aff001;  Stoiana Alexandrova aff003;  John Asara aff003;  Frank W. Sellke aff001;  Michael Sturek aff004;  Jun Feng aff001;  Boian S. Alexandrov aff005;  Anny Usheva aff001
Působiště autorů: Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI, United States of America aff001;  Icahn School of Medicine at Mount Sinai, New York, NY, United States of America aff002;  Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America aff003;  Indiana University, School of Medicine, Indianapolis, IN, United States of America aff004;  Los Alamos National Laboratory, Los Alamos, NM, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article


Although the high-fat-diet-induced metabolic syndrome (MetS) is a precursor of human cardiac pathology, the myocardial metabolic state in MetS is far from clear. The discrepancies in metabolite handling between human and small animal models and the difficulties inherent in obtaining human tissue complicate the identification of the myocardium-specific metabolic response in patients. Here we use the large animal model of swine that develops the hallmark criteria of human MetS. Our comparative metabolomics together with transcriptomics and computational nonnegative matrix factorization (NMF) interpretation of the data exposes significant decline in metabolites related to the fatty acid oxidation, glycolysis, and pentose phosphate pathway. Behind the reversal lies decreased expression of enzymes that operate in the pathways. We showed that diminished glycogen deposition is a metabolic signature of MetS in the pig myocardium. The depletion of glycogen arises from disbalance in expression of genes that break down and synthesize glycogen. We show robust acetoacetate accumulation and activated expression of key enzymes in ketone body formation, catabolism and transporters, suggesting a shift in fuel utilization in MetS. A contrasting enrichment in O-GlcNAcylated proteins uncovers hexosamine pathway and O-GlcNAcase (OGA) expression involvement in the myocardial response to MetS. Although the hexosamine biosynthetic pathway (HBP) activity and the availability of the UDP-GlcNAc substrate in the MetS myocardium is low, the level of O-GlcNacylated proteins is high as the O-GlcNacase is significantly diminished. Our data support the perception of transcriptionally driven myocardial alterations in expression of standard fatty acids, glucose metabolism, glycogen, and ketone body related enzymes and subsequent paucity of their metabolite products in MetS. This aberrant energy metabolism in the MetS myocardium provide insight into the pathogenesis of CVD in MetS.

Klíčová slova:

Fatty acids – Gene expression – Glycogens – Glycolysis – Ketones – Metabolites – Myocardium – Swine


1. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017;183:57–70. doi: 10.1016/j.trsl.2017.01.001 PubMed Central PMCID: PMC5393930. 28130064

2. Neubauer S. The failing heart–an engine out of fuel. N Engl J Med 2007;356:1140–51. doi: 10.1056/NEJMra063052 17360992

3. Pujos-Guillot E, Brandolini M, Pétéra M, Grissa D, Joly C, Lyan B, et al. Systems Metabolomics for Prediction of Metabolic Syndrome. Journal of proteome research. 2017;16(2262–2272). doi: 10.1021/acs.jproteome.7b00116 28440083

4. Libert DM, Nowacki AS, Natowicz MR. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes. Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018;6:e5410. doi: 10.7717/peerj.5410 30186675

5. Heather LC, Wang X, West JA, Griffin JL. A practical guide to metabolomic profiling as a discovery tool for human heart disease. Journal of molecular and cellular cardiology 2013;55:2–11. doi: 10.1016/j.yjmcc.2012.12.001 23231771

6. Gerrity RG, Natarajan R, Nadler JL, Kimsey T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 2001;50:1654–65. doi: 10.2337/diabetes.50.7.1654 11423488

7. Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, et al. Resveratrol Improves Myocardial Perfusion in a Swine Model of Hypercholesterolemia and Chronic Myocardial Ischemia. Circulation 2010;122:S142–9. doi: 10.1161/CIRCULATIONAHA.109.920132 20837905

8. Brown KK, Spinelli JB, Asara J, Toker A. Adaptive Reprogramming of De Novo Pyrimidine Synthesis is a Metabolic Vulnerability in Triple-Negative Breast Cancer. Cancer discovery 2017;7:391–9. doi: 10.1158/2159-8290.CD-16-0611 28255083

9. Cichocki A, Zdunek R, Phan HA, Amari S-i. Nonnegative matrix and tensor factorizations. Applications to exploratory multi-way data analysis and blind source separation Oxford: Wiley; 2009.

10. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering Signatures of Mutational Processes Operative in Human Cancer. Cell Reports 2013;3:246–59. doi: 10.1016/j.celrep.2012.12.008 23318258

11. Brunet JP, Tamayo P, Golub RT, Mesirov PJ. Metagenes and molecular pattern discovery using matrix factorization. PNAS. 2004;101(12):4164–9. doi: 10.1073/pnas.0308531101 15016911

12. Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A. YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). The Journal of biological chemistry 2003;278:14046–52. doi: 10.1074/jbc.M300789200 12588874

13. Kang TH, Jung WJ, Cho WJ, Hwang SE. Down-regulation of Sp1 Activity through Modulation of O-Glycosylation by Treatment with a Low Glucose Mimetic, 2-Deoxyglucose. The Journal of Biological Chemistry. 2003;278:51223–31. doi: 10.1074/jbc.M307332200 14532290

14. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 2002;286(1):81–9. doi: 10.1016/s0378-1119(01)00809-5 11943463

15. Blättler MS, Verdeguer F, Liesa M, Cunningham TJ, Vogel OR, Chim H, et al. Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle. Molecular and Cellular Biology 2012;32(16):3333–46. doi: 10.1128/MCB.00337-12 22711985

16. Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014;171(8):2080–90. doi: 10.1111/bph.12475 24147975. PubMed Central PMCID: PMC3976623.

17. Cori CF, Cori GT. Glycogen formation in the liver from d- and l-lactic acid. J Biol Chem. 1929;81:389–403.

18. Medford HM, Chatham JC, Marsh SA. Chronic ingestion of a Western diet increases O-linked-β-N-acetylglucosamine (O-GlcNAc) protein modification in the rat heart. Life Sci 2012;14(23–24):883–8.

19. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 133. 2016;133:698–705. doi: 10.1161/CIRCULATIONAHA.115.017355 26819376

20. Hitosugi T, Zhou L, Elf S, Fan J, Kang H-B, Seo JH, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer cell. 2012;22:585–600. doi: 10.1016/j.ccr.2012.09.020 23153533

21. Chandramouli C, Varma U, Stevens EM, Xiao RP, Stapleton DI, Mellor KM, et al. Myocardial glycogen dynamics: new perspectives on disease mechanisms. Clin Exp Pharmacol Physiol. 2015 42(4):415–25. doi: 10.1111/1440-1681.12370 25676548

22. Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 1998;329:321–8. doi: 10.1042/bj3290321 9425115

23. Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism 2017;77:65–72. doi: 10.1016/j.metabol.2017.08.005 29132539

24. Guide for the Care and Use of Laboratory Animals, 8th edition. Washington (DC): The National Academies Press; 2011. doi: 10.1258/la.2010.010031

25. Lange M, Fujikawa T, Koulova A, Kang S, Griffin MJ, Lassaletta AD, et al. Arterial territory-specific phosphorylated retinoblastoma protein species and CDK2 promote differences in the vascular smooth muscle cell response to mitogens. Cell cycle (Georgetown, Tex) 2014;13:315–23.

26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635 23104886

27. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106 20979621

28. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell. 2012;149:979–93. doi: 10.1016/j.cell.2012.04.024 22608084

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden