Benefits of VISION Max automated cross-matching in comparison with manual cross-matching: A multidimensional analysis


Autoři: Hee-Jung Chung aff001;  Mina Hur aff001;  Sang Gyeu Choi aff001;  Hyun-Kyung Lee aff001;  Seungho Lee aff002;  Hanah Kim aff001;  Hee-Won Moon aff001;  Yeo-Min Yun aff001
Působiště autorů: Department of Laboratory Medicine, Konkuk University Medical Center and Konkuk University School of Medicine, Seoul, South Korea aff001;  Department of Occupational and Environmental Medicine, Ajou University Medicine, Suwon, South Korea aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226477

Souhrn

Background

VISION Max (Ortho-Clinical Diagnostics, Raritan, NJ, USA) is a newly introduced automated blood bank system. Cross-matching (XM) is an important test confirming safety by simulating reaction between packed Red Blood Cells (RBCs) and patient blood in vitro before transfusion. We assessed the benefits of VISION Max automated XM (A-XM) in comparison with those of manual XM (M-XM) by using multidimensional analysis (cost-effectiveness and quality improvement).

Materials and methods

In a total of 327 tests (130 patients), results from A-XM and M-XM were compared. We assessed the concordance rate, risk priority number (RPN), turnaround time, hands-on time, and the costs of both methods. We further simulated their annual effects based on 37,937 XM tests in 2018.

Results

The concordance rate between A-XM and M-XM was 97.9% (320/327, kappa = 0.83), and the seven discordant results were incompatible for transfusion in A-XM, while compatible for transfusion in M-XM. None of the results was incompatible for transfusion in A-XM, while compatible for transfusion in M-XM, meaning A-XM detect agglutination more sensitively and consequently provides a more safe result than M-XM. A-XM was estimated to have a 6.3-fold lower risk (229 vs. 1,435 RPN), shorter turnaround time (19.1 vs. 23.3 min, P < 0.0001), shorter hands-on time (1.1 vs. 5.3 min, P < 0.0001), and lower costs per single test than M-XM (1.44 vs. 2.70 USD). A-XM permitted annual savings of 46 million RPN, 15.1 months of daytime workers’ labor, and 47,042 USD compared with M-XM.

Conclusion

This is the first attempt to implement A-XM using VISION Max. VISION Max A-XM appears to be a safe, practical, and reliable alternative for pre-transfusion workflow with the potential to improve quality and cost-effectiveness in the blood bank.

Klíčová slova:

Automation – Blood – Blood transfusion – Cost-effectiveness analysis – Globulins – Indirect costs – Medical personnel – Blood banks


Zdroje

1. British Committee for Standards in Hematology, Milkins C, Berryman J, Cantwell C, Elliott C, Haggas R, et al. Guidelines for pre-transfusion compatibility procedures in blood transfusion laboratories. British Committee for Standards in Haematology. Transfus Med. 2013;23: 3–35. doi: 10.1111/j.1365-3148.2012.01199.x 23216974

2. Harm SK, Dunbar NM. Transfusion-service-related activities: Pretransfusion testing and storage, monitoring, processing, distribution, and inventory management of blood components. In: Fung MK, Eder AF, Spitalnik SL, et al. eds. Technical manual. 19th ed. Bethesda, MD: American Association of Blood Banks; 2017:457–87.

3. American Association of Blood Banks Standards Program Committee. Standards for blood banks and transfusion services. 31st ed. Bethesda, MD: American Association of Blood Banks; 2012.

4. Nasr IH, Papineni McIntosh A, Hussain K, Fardy MJ. Preoperative cross-matching in major head and neck surgery: A study of a department's current practice and eligibility for electronic cross-matching. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116: 534–539. doi: 10.1016/j.oooo.2013.06.034 24021773

5. Kuriyan M, Fox E. Pretransfusion testing without serologic crossmatch: approaches to ensure patient safety. Vox Sang. 2000;78: 113–118. doi: 10.1159/000031160 10765147

6. Sidhu M, Meenia R, Akhter N, Sawhney V, Irm Y. Report on errors in pretransfusion testing from a tertiary care center: A step toward transfusion safety. Asian J Transfus Sci. 2016;10: 48–52. doi: 10.4103/0973-6247.175402 27011670

7. Maskens C, Downie H, Wendt A, Lima A, Merkley L, Lin Y, et al. Hospital-based transfusion error tracking from 2005 to 2010: Identifying the key errors threatening patient transfusion safety. Transfusion. 2014;54: 66–73. doi: 10.1111/trf.12240 23672511

8. Ansari S, Szallasi A. 'Wrong blood in tube': Solutions for a persistent problem. Vox Sang. 2011;100: 298–302. doi: 10.1111/j.1423-0410.2010.01391.x 20738838

9. Dzik WH, Murphy MF, Andreu G, Heddle N, Hogman C, Kekomaki R, et al. An international study of the performance of sample collection from patients. Vox Sang. 2003;85: 40–47. doi: 10.1046/j.1423-0410.2003.00313.x 12823729

10. Schwendimann R, Blatter C, Dhaini S, Simon M, Ausserhofer D. The occurrence, types, consequences and preventability of in-hospital adverse events-a scoping review. BMC Health Serv Res. 2018;18: 521. doi: 10.1186/s12913-018-3335-z 29973258

11. Makary MA, Daniel M. Medical error-the third leading cause of death in the US. BMJ. 2016;353: i2139. doi: 10.1136/bmj.i2139 27143499

12. Miligy DA. Laboratory errors and patient safety. Int J Health Care Qual Assur. 2015;28: 2–10. doi: 10.1108/IJHCQA-10-2008-0098 26308398

13. Joint Commission on Accreditation of Healthcare Organizations. Comprehensive accreditation manual for hospitals. Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 2003.

14. Krouwer JS. An improved failure mode effects analysis for hospitals. Arch Pathol Lab Med. 2004;128: 663–667. doi: 10.1043/1543-2165(2004)128<663:AIFMEA>2.0.CO;2 15163233

15. Coles G, Fuller B, Nordquist K, Kongslie A. Using failure mode effects and criticality analysis for high-risk processes at three community hospitals. Jt Comm J Qual Patient Saf. 2005;31: 132–140. doi: 10.1016/s1553-7250(05)31018-x 15828596

16. Chiozza ML, Ponzetti C. FMEA: A model for reducing medical errors. Clin Chim Acta. 2009;404: 75–78. doi: 10.1016/j.cca.2009.03.015 19298799

17. Han TH, Kim MJ, Kim S, Kim HO, Lee MA, Choi JS, et al. The role of failure modes and effects analysis in showing the benefits of automation in the blood bank. Transfusion. 2013;53: 1077–1082. doi: 10.1111/j.1537-2995.2012.03883.x 23002928

18. Lu Y, Teng F, Zhou J, Wen A, Bi Y. Failure mode and effect analysis in blood transfusion: a proactive tool to reduce risks. Transfusion. 2013;53: 3080–3087. doi: 10.1111/trf.12174 23560475

19. Saxena S, Kempf R, Wilcox S, Shulman IA, Wong L, Cunningham G, et al. Critical laboratory value notification: a failure mode effects and criticality analysis. Jt Comm J Qual Patient Saf. 2005;31: 495–506. doi: 10.1016/s1553-7250(05)31064-6 16255327

20. Jiang Y, Jiang H, Ding S, Liu Q. Application of failure mode and effects analysis in a clinical chemistry laboratory. Clin Chim Acta. 2015;448: 80–85. doi: 10.1016/j.cca.2015.06.016 26116892

21. Mora A, Ayala L, Bielza R, Ataulfo Gonzalez F, Villegas A. Improving safety in blood transfusion using failure mode and effect analysis. Transfusion. 2019;59: 516–523. doi: 10.1111/trf.15137 30609064

22. Shahangian S, Snyder SR. Laboratory medicine quality indicators: A review of the literature. Am J Clin Pathol. 2009;131: 418–431. doi: 10.1309/AJCPJF8JI4ZLDQUE 19228647

23. Park Y, Kim SY, Koo SH, Lim J, Kim JM, Lim YA, et al. Evaluation of the automated blood bank systems IH-500 and VISION Max for ABO-RhD blood typing and unexpected antibody screening. Lab Med Online. 2017;7: 170–175.

24. Product manual of Vision Max automated system. [cited 2019 May 20]. Available from:https://www.orthoclinicaldiagnostics.com/en-us/home/products/ortho-vision-max-analyzer

25. Dolci A, Giavarina D, Pasqualetti S, Szoke D, Panteghini M. Total laboratory automation: Do stat tests still matter? Clin Biochem. 2017;50: 605–611. doi: 10.1016/j.clinbiochem.2017.04.002 28390779

26. Chung HJ, Song YK, Hwang SH, Lee DH, Sugiura T. Experimental fusion of different versions of the total laboratory automation system and improvement of laboratory turnaround time. J Clin Lab Anal. 2018;32: e22400. doi: 10.1002/jcla.22400 29479855

27. Lippi G, Da Rin G. Advantages and limitations of total laboratory automation: a personal overview. Clin Chem Lab Med. 2019;57: 802–811. doi: 10.1515/cclm-2018-1323 30710480

28. South SF, Casina TS, Li L. Exponential error reduction in pretransfusion testing with automation. Transfusion. 2012;52: 81S–87S. doi: 10.1111/j.1537-2995.2012.03816.x 22882101

29. Bhagwat SN, Sharma JH, Jose J, Modi CJ. Comparison between conventional and automated techniques for blood grouping and crossmatching: Experience from a tertiary care centre. J Lab Physicians. 2015;7: 96–102. doi: 10.4103/0974-2727.163130 26417159

30. Koh YE, Yoon J, Kwon SH, Kim YH, Choi JY, Kim JY, et al. Evaluation of the automated blood bank instrument QWALYS-3 for cross-matching tests. Korean J Blood Transfus. 2014;25: 218–225.

31. Korea enforcement decree of the bioethics and safety act. Article 36 (2). 2012. [cited 2019 May 20]. Database: National Law Information Center. Available from: http://www.law.go.kr.

32. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. Clin Chem. 2015;61: 1446–1452. doi: 10.1373/clinchem.2015.246280 26510957

33. Machin D, Campbell MJ, Tan SB, Tan SH. Sample sizes for clinical, laboratory and epidemiology studies. 4th ed. Hoboken, Wiley-Blackwell; 2018.

34. Indrayan A, Malhotra RK. Medical Biostatistics. 4th ed. Florida, Taylor & Frnacis; 2018.

35. International Electrotechnical Commission. International Standard 60812 2018, Failure modes and effects analysis (FMEA and FMECA), 3rd ed. Geneva: International Electrotechnical Commission; 2018.

36. Shin KH, Kim HH, Chang CL, Lee EY. Economic and workflow analysis of a blood bank automated system. Ann Lab Med. 2013;33: 268–273. doi: 10.3343/alm.2013.33.4.268 23826563

37. Sim J, Wright CC. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys Ther. 2005;85: 257–268. 15733050

38. Balenton N. Nonparametric statistics. In: Khakshooy AM, Chiappelli F, editors. Practical biostatistics in translational healthcare. Germany: Springer; 2018. pp. 123–126.

39. Burckhardt I, Last K, Zimmermann S. Shorter incubation times for detecting multi-drug resistant bacteria in patient samples: Defining early imaging time points using growth kinetics and total laboratory automation. Ann Lab Med. 2019;39: 43–49. doi: 10.3343/alm.2019.39.1.43 30215229

40. Choi Q, Kim HJ, Kim JW, Kwon GC, Koo SH. Manual versus automated streaking system in clinical microbiology laboratory: Performance evaluation of Previ Isola for blood culture and body fluid samples. J Clin Lab Anal. 2018;32: e22373. doi: 10.1002/jcla.22373 29314254

41. Li Z, Han R, Yan Z, Li L, Feng Z. Antinuclear antibodies detection: A comparative study between automated recognition and conventional visual interpretation. J Clin Lab Anal. 2019;33: e22619. doi: 10.1002/jcla.22619 30030865

42. Chaudhary R, Agarwal N. Safety of type and screen method compared to conventional antiglobulin crossmatch procedures for compatibility testing in Indian setting. Asian J Transfus Sci. 2011;5: 157–159. doi: 10.4103/0973-6247.83243 21897596

43. Alavi-Moghaddam M, Bardeh M, Alimohammadi H, Emami H, Hosseini-Zijoud SM. Blood transfusion practice before and after implementation of type and screen protocol in emergency department of a university affiliated hospital in Iran. Emerg Med Int. 2014;2014: 316463. doi: 10.1155/2014/316463 25254117

44. Kumari S. Blood transfusion practices in a tertiary care center in Northern India. J Lab Physicians. 2017;9: 71–75. doi: 10.4103/0974-2727.199634 28367018


Článek vyšel v časopise

PLOS One


2019 Číslo 12