Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ

Autoři: Eugeny Gnuchikh aff001;  Ancha Baranova aff001;  Vera Schukina aff001;  Ilyas Khaliullin aff001;  Gennady Zavilgelsky aff002;  Ilya Manukhov aff001
Působiště autorů: Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia aff001;  National Research Center, Kurchatov Institute, GOSNIIGENETIKA, Moscow, Russia aff002;  School of Systems Biology, George Mason University, Fairfax, VA, United States of America aff003;  Research Centre for Medical Genetics, Moscow, Russia aff004
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226576


Here we present a study of the thermal inactivation and the refolding of the proteins in Gram positive Bacillus subtilis. To enable use of bacterial luciferases as the models for protein thermal inactivation and refolding in B. subtilis cells, we developed a variety of bright luminescent B. subtilis strains which express luxAB genes encoding luciferases of differing thermolability. The kinetics of the thermal inactivation and the refolding of luciferases from Photorhabdus luminescens and Photobacterium leiognathi were compared in Gram negative and Gram positive bacteria. In B. subtilis cells, these luciferases are substantially more thermostable than in Escherichia coli. Thermal inactivation of the thermostable luciferase P. luminescens in B. subtilis at 48.5°С behaves as a first-order reaction. In E.coli, the first order rate constant (Kt) of the thermal inactivation of luciferase in E. coli exceeds that observed in B. subtilis cells 2.9 times. Incubation time dependence curves for the thermal inactivation of the thermolabile luciferase of P. leiognathi luciferase in the cells of E. coli and B. subtilis may be described by first and third order kinetics, respectively. Here we shown that the levels and the rates of refolding of thermally inactivated luciferases in B. subtilis cells are substantially lower that that observed in E. coli. In dnaK-negative strains of B. subtilis, both the rates of thermal inactivation and the efficiency of refolding are similar to that observed in wild-type strains. These experiments point that the role that DnaKJE plays in thermostability of luciferases may be limited to bacterial species resembling E. coli.

Klíčová slova:

Bacillus subtilis – Bioluminescence – Gram positive bacteria – Chloramphenicol – Luciferase – Luminescence – Plasmid construction


1. Anfinsen CB. Principles that govern folding of protein chains. Science 1973; 181: 223–230. doi: 10.1126/science.181.4096.223 4124164

2. Hartl FU. Molecular chaperones in cellular protein folding. Nature, 1996; 381: 571–580. doi: 10.1038/381571a0 8637592

3. Bukau B, and Horwich AL. The Hsp70 and Hsp60 Chaperone Machines. Cell, 1998; 92: 351–366. doi: 10.1016/s0092-8674(00)80928-9 9476895

4. Lund PA. Microbial molecular chaperones. Adv. Microb. Physiol. 2001, 44:93–140. doi: 10.1016/s0065-2911(01)44012-4 11407116

5. Teter SA, Houry WA, Ang D, Tradler T, Rockabrandt D, Fischer G, et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell, 1999. 97(6):755–765. doi: 10.1016/s0092-8674(00)80787-4 10380927

6. Hoskins JR, Sharma S, Sathyanarayana BK, and Wickner S. Clp ATPases and their role in protein unfolding and degradation. Adv. Protein Chem. 2001, 59:413–429. doi: 10.1016/s0065-3233(01)59013-0 11868279

7. Mogk A, Deuerling E, Vorderwwulbecke S, Vierling E, Bukau B. Small heat shock proteins, ClpB and the DnaK system form a functional trade in reversing protein aggregation. Molecular Microbiol. 2003. 50:585–595.;

8. Mogk A, Schlieker C, Friedrich KL, Schonfeld H-J, Vierling E, Bukau B. Refolding of substrates bound to small HSPs relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 2003. 278: 31033–31042. doi: 10.1074/jbc.M303587200 12788951

9. Frydman J, Nimmesgern E, Ohtsuka K and Hartl FU. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994; 370(6485):111–117. doi: 10.1038/370111a0 8022479

10. Schroder H, Langer T, Hartl FU, and Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 1993, 12(11):4137–4144. 7900997

11. Manukhov IV, Eroshnikov GE, Vyssokikh MYu, Zavilgelsky GB. Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat-shock proteins. FEBS Lett. 1999. (448). P. 265–268.

12. Zavilgelsky GB, Kotova VY, Mazhul' MM, Manukhov IV. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Biochemistry (Mosc). 2002; 67(9):986–92.

13. Hsieh TY, Nillegoda NB, Tyedmers J, Bukau B, Mogk A, Kramer G. Monitoring protein misfolding by site-specific labeling of proteins in vivo. PLoS One. 2014, 9(6):e99395. doi: 10.1371/journal.pone.0099395 24915041

14. Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, et al., Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram positive lux transposon, Infect. Immun. 2001, 69 (5): 3350–3358 doi: 10.1128/IAI.69.5.3350-3358.2001 11292758

15. Deryabin DG, Efremova LV, Karimov IF, Manukhov IV, Gnuchikh EY, Miroshnikov SA. Microbiology Comparative sensitivity of the luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis strains to toxic effects of carbon-based nanomaterials and metal nanoparticles. Microbiology (Mikrobiologiya). 2016, 85(2): 177–186.

16. Deryabin DG, Karimov IF, Manukhov IV, Tolmacheva NA, Balabanov VP. Differential analysis of bactericidal systems of blood serum with recombinant luminescent Escherichia coli and Bacillus subtilis strains. Bull Exp Biol Med. 2012; 154(1):59–63. doi: 10.1007/s10517-012-1875-5 23330091

17. Vesterlund S, Paltta J, Lauková A, Karp M, Ouwehand AC. Rapid screening method for the detection of antimicrobial substances. J Microbiol Methods. 2004; 57(1):23–31. doi: 10.1016/j.mimet.2003.11.014 15003685

18. Immonen N, Karp M. Bioluminescence-based bioassays for rapid detection of nisin in food. Biosens Bioelectron. 2007; 22(9–10):1982–7. doi: 10.1016/j.bios.2006.08.029 16996730

19. Reyes DY, and Yoshikawa H. 2002. DnaK chaperone machine and trigger factor are only partially required for normal growth of Bacillus subtilis. Biosci. Biotechnol. Biochem. 66:1583–1586. doi: 10.1271/bbb.66.1583 12224648

20. Smirnov SV, Kotliarova VA. Method for producing isoprene using bacterium. Patent 2015.

21. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA. 1958; 44:1072–1078. doi: 10.1073/pnas.44.10.1072 16590310

22. Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970; 53(1):159–62. doi: 10.1016/0022-2836(70)90051-3 4922220

23. Titok MA, Chapuis J, Selezneva YV, Lagodich AV, Prokulevich VA, Ehrlich SD, et al. Bacillus subtilis soil isolates: Plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid. 2003; 49:53–62. doi: 10.1016/s0147-619x(02)00109-9 12584001

24. Guiziou S, Sauveplane V, Chang HJ, Clerté C, Declerck N, Jules M, et al. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res. 2016; 44:7495–7508. doi: 10.1093/nar/gkw624 27402159

25. Bazhenov SV, Khrulnova SA, Konopleva MN, Manukhov IV. Seasonal changes in luminescent intestinal microflora of the fish inhabiting the Bering and Okhotsk seas. FEMS Microbiol Lett. 2019 Feb 1;366(4). doi: 10.1093/femsle/fnz040 30772893

26. Tyulkova N.A., Sandalova T.P Comparative study of temperature effects on bacterial luciferases. Biochemistry. 1996; 2(61):205.

27. Rakovskii Adam Vladislavovich. A course in physical chemistry. Goskhimizdat, 1939 (Leningrad)—544s.

Článek vyšel v časopise


2019 Číslo 12