CPO Complete, a novel test for fast, accurate phenotypic detection and classification of carbapenemases


Autoři: Gina K. Thomson aff001;  Sameh AbdelGhani aff002;  Kenneth S. Thomson aff002
Působiště autorů: University of Louisville Hospital, Microbiology Department, Louisville, Kentucky, United States of America aff001;  University of Louisville School of Medicine, Department of Pathology and Laboratory Medicine Louisville, Kentucky, United States of America aff002;  Beni-Suef University School of Pharmacy, Department of Microbiology and Immunology, Beni-Suef, Egypt aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0220586

Souhrn

Carbapenemase-producing organisms (CPOs) are Gram-negative bacteria that are typically resistant to most or all antibiotics and are responsible for a global pandemic of high mortality. Rapid, accurate detection of CPOs and the classification of their carbapenemases are valuable tools for reducing the mortality of the CPO-associated infections, preventing the spread of CPOs, and optimizing use of new β-lactamase inhibitor combinations such as ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam. The current study evaluated the performance of CPO Complete, a novel, manual, phenotypic carbapenemase detection and classification test. The test was evaluated for sensitivity and specificity against 262 CPO isolates of Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii and 67 non-CPO isolates. It was also evaluated for carbapenemase classification accuracy against 205 CPOs that produced a single carbapenemase class. The test exhibited 100% sensitivity 98.5% specificity for carbapenemase detection within 90 minutes and detected 74.1% of carbapenemases within 10 minutes. In the classification evaluation, 99.0% of carbapenemases were correctly classified for isolates that produced a single carbapenemase. The test is technically simple and has potential for adaptation to automated instruments. With lyophilized kit storage at temperatures up to 38°C, the CPO Complete test has the potential to provide rapid, accurate carbapenemase detection and classification in both limited resource and technologically advanced laboratories.

Klíčová slova:

Antibiotic resistance – Antibiotics – Catalogs – Death rates – Enterobacteriaceae – Pseudomonas aeruginosa – Toxic agents


Zdroje

1. Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother. 2015;70(1):23–40. doi: 10.1093/jac/dku356 25261423.

2. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17(12):1798–803. doi: 10.1111/j.1469-0691.2011.03514.x 21595793.

3. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):862–72. doi: 10.1111/1469-0691.12697 24890393.

4. Mataseje LF, Abdesselam K, Vachon J, Mitchel R, Bryce E, Roscoe D, et al. Results from the Canadian Nosocomial Infection Surveillance Program on Carbapenemase-Producing Enterobacteriaceae, 2010 to 2014. Antimicrob Agents Chemother. 2016;60(11):6787–94. Epub 2016/09/08. doi: 10.1128/AAC.01359-16 27600052

5. Smith R, Coast J. The true cost of antimicrobial resistance. Bmj. 2013;346:f1493. doi: 10.1136/bmj.f1493 23479660.

6. Bartsch SM, Huang SS, Wong KF, Slayton RB, McKinnell JA, Sahm DF, et al. Impact of Delays between Clinical and Laboratory Standards Institute and Food and Drug Administration Revisions of Interpretive Criteria for Carbapenem-Resistant Enterobacteriaceae. J Clin Microbiol. 2016;54(11):2757–62. Epub 2016/09/02. doi: 10.1128/JCM.00635-16 27582516

7. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012;18(5):413–31. doi: 10.1111/j.1469-0691.2012.03821.x 22507109.

8. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect. 2010;16(2):102–11. doi: 10.1111/j.1469-0691.2009.03115.x 20085604.

9. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray for the rapid detection of extended-spectrum beta-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother. 2012;67(8):1865–9. doi: 10.1093/jac/dks156 22604450.

10. Dortet L, Boulanger A, Poirel L, Nordmann P. Bloodstream infections caused by Pseudomonas spp.: how to detect carbapenemase producers directly from blood cultures. J Clin Microbiol. 2014;52(4):1269–73. doi: 10.1128/JCM.03346-13 24501031

11. Gutierrez-Gutierrez B, Salamanca E, de Cueto M, Hsueh PR, Viale P, Pano-Pardo JR, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017. doi: 10.1016/S1473-3099(17)30228-1 28442293.

12. Kochar S, Sheard T, Sharma R, Hui A, Tolentino E, Allen G, et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2009;30(5):447–52. doi: 10.1086/596734 19301985.

13. Rogers BA, Sidjabat HE, Silvey A, Anderson TL, Perera S, Li J, et al. Treatment options for new delhi metallo-Beta-lactamase-harboring enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–3. doi: 10.1089/mdr.2012.0063 23330550.

14. Savard P, Perl TM. Combating the spread of carbapenemases in Enterobacteriaceae: a battle that infection prevention should not lose. Clin Microbiol Infect. 2014;20(9):854–61. doi: 10.1111/1469-0691.12748 24980472.

15. Tamma PD, Opene BN, Gluck A, Chambers KK, Carroll KC, Simner PJ. Comparison of 11 Phenotypic Assays for Accurate Detection of Carbapenemase-Producing Enterobacteriaceae. J Clin Microbiol. 2017;55(4):1046–55. Epub 2017/01/13. doi: 10.1128/JCM.02338-16 28077701

16. Thomson G, Turner D, Brasso W, Kircher S, Guillet T, Thomson K. High-Stringency Evaluation of the Automated BD Phoenix CPO Detect and Rapidec Carba NP Tests for Detection and Classification of Carbapenemases. J Clin Microbiol. 2017;55(12):3437–43. Epub 2017/10/06. doi: 10.1128/JCM.01215-17 28978681

17. Tofas P, Skiada A, Angelopoulou M, Sipsas N, Pavlopoulou I, Tsaousi S, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: Analysis of 50 cases. Int J Antimicrob Agents. 2016;47(4):335–9. doi: 10.1016/j.ijantimicag.2016.01.011 27005460.

18. Nordmann P, Poirel L, Dortet L. Rapid Detection of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):1503–7. doi: 10.3201/eid1809.120355 22932472.

19. AbdelGhani S, Thomson GK, Snyder JW, Thomson KS. Comparison of the Carba NP, Modified Carba NP, and Updated Rosco Neo-Rapid Carb Kit Tests for Carbapenemase Detection. J Clin Microbiol. 2015;53(11):3539–42. doi: 10.1128/JCM.01631-15 26311862

20. Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol. 2014;52(7):2359–64. Epub 2014/04/25. doi: 10.1128/JCM.00594-14 24759709

21. Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56(12):6437–40. doi: 10.1128/AAC.01395-12 23070158.

22. Takissian J, Bonnin RA, Naas T, Dortet L. NG-Test Carba 5 for Rapid Detection of Carbapenemase-Producing Enterobacterales from Positive Blood Cultures. Antimicrob Agents Chemother. 2019;63(5). Epub 2019/02/26. doi: 10.1128/AAC.00011-19 30803973

23. Kieffer N, Poirel L, Nordmann P. Rapid immunochromatography-based detection of carbapenemase producers. Infection. 2019;47(4):673–5. Epub 2019/05/31. doi: 10.1007/s15010-019-01326-1 31144273.

24. Beresford RW, Maley M. Reduced Incubation Time of the Modified Carbapenem Inactivation Test and Performance of Carbapenem Inactivation in a Set of Carbapenemase-Producing Enterobacteriaceae with a High Proportion of bla IMP Isolates. J Clin Microbiol. 2019;57(7). Epub 2019/03/08. doi: 10.1128/JCM.01852-18 30842234.

25. Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin Infect Dis. 2016;63(12):1615–8. doi: 10.1093/cid/ciw636 27624958

26. Voulgari E, Poulou A, Koumaki V, Tsakris A. Carbapenemase-producing Enterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back? Future Microbiol. 2013;8:27–39. doi: 10.2217/fmb.12.130 23252491.

27. Humphries RM. CIM City: the Game Continues for a Better Carbapenemase Test. J Clin Microbiol. 2019;57(7). Epub 2019/04/19. doi: 10.1128/JCM.00353-19 30995992.

28. Shurina B, VanPelt J, Ramelot T, Page R. Characterization of KPC-2 Backbone Dynamics Upon Avibactam Binding via NMR Spectroscopic Methods. The FASEB Journal. 2019;33(No. 1 supplement). Epub 1 April 2019.

29. Livermore DM, Mushtaq S, Barker K, Hope R, Warner M, Woodford N. Characterization of beta-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline + avibactam (NXL104). J Antimicrob Chemother. 2012;67(6):1354–8. doi: 10.1093/jac/dks079 22441578.

30. Castanheira M, Huband MD, Mendes RE, Flamm RK. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(9). Epub 2017/06/28. doi: 10.1128/AAC.00567-17 28652234

31. Dupont H, Gaillot O, Goetgheluck AS, Plassart C, Emond JP, Lecuru M, et al. Molecular Characterization of Carbapenem-Nonsusceptible Enterobacterial Isolates Collected during a Prospective Interregional Survey in France and Susceptibility to the Novel Ceftazidime-Avibactam and Aztreonam-Avibactam Combinations. Antimicrob Agents Chemother. 2016;60(1):215–21. doi: 10.1128/AAC.01559-15 26482307

32. Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, et al. Activity of Meropenem Combined with RPX7009, a Novel beta-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrob Agents Chemother. 2015;59(8):4856–60. doi: 10.1128/AAC.00843-15 26033723

33. Beidenbach DJ, Kazmierczak K, Bouchillon SK, Sahm D, Bradford PA. In Vitro Activity of Aztreonam-Avibactam against a Global Collection of Gram-Negative Pathogens from 2012 and 2013. Antimicrob Agents Chemother. 2015;59(7):4239–48. doi: 10.1128/AAC.00206-15 25963984

34. Li H, Estabrook M, Jacoby GA, Nichols WW, Testa RT, Bush K. In Vitro Susceptibility of Characterized Beta-Lactamase-Producing Strains Tested with Avibactam Combinations. Antimicrob Agents Chemother. 2015;59(3):1789–93. doi: 10.1128/AAC.04191-14 25534728

35. McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, et al. Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First Report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60(7):4420–1. doi: 10.1128/AAC.01103-16 27230792

36. Bathoorn E, Tsioutis C, da Silva Voorham JM, Scoulica EV, Ioannidou E, Zhou K, et al. Emergence of pan-resistance in KPC-2 carbapenemase-producing Klebsiella pneumoniae in Crete, Greece: a close call. J Antimicrob Chemother. 2016;71(5):1207–12. Epub 2016/01/29. doi: 10.1093/jac/dkv467 26817488.

37. Li Y, Sun QL, Shen Y, Zhang Y, Yang JW, Shu LB, et al. Rapid Increase in Prevalence of Carbapenem-Resistant Enterobacteriaceae (CRE) and Emergence of Colistin Resistance Gene mcr-1 in CRE in a Hospital in Henan, China. J Clin Microbiol. 2018;56(4). Epub 2018/02/02. doi: 10.1128/JCM.01932-17 29386265

38. Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae: A Case Report and Review of Literature. Open Forum Infectious Diseases. 2017:1–4.

39. Nelson K, Hemarajata P, Sun D, Rubio-Aparicio D, Tsivkovski R, Yang S, et al. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob Agents Chemother. 2017;61(10). Epub 2017/07/26. doi: 10.1128/AAC.00989-17 28739787

40. Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, Nguyen MH. Mutations in blaKPC-3 That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants That Function as Extended-Spectrum beta-Lactamases. Antimicrob Agents Chemother. 2017;61(5). doi: 10.1128/AAC.02534-16 28223379

41. Walsh TR, Toleman MA. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J Antimicrob Chemother. 2012;67(1):1–3. doi: 10.1093/jac/dkr378 21994911.

42. Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36 Suppl 3:S8–14. doi: 10.1016/S0924-8579(10)70004-2 21129630.

43. Hersh AL, Newland JG, Beekmann SE, Polgreen PM, Gilbert DN. Unmet medical need in infectious diseases. Clin Infect Dis. 2012;54(11):1677–8. doi: 10.1093/cid/cis275 22474176.

44. Rossolini GM. Extensively drug-resistant carbapenemase-producing Enterobacteriaceae terobacteriaceae producing carbapenemases: an emerging challenge for clinicians and healthcare systems. J Intern Med. 2015. Epub 2015/01/30.

45. Huttner A, Harbarth S, Carlet J, Cosgrove S, Goossens H, Holmes A, et al. Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob Resist Infect Control. 2013;2:31. doi: 10.1186/2047-2994-2-31 24237856

46. Lutgring JD, Limbago BM. The Problem of Carbapenemase-Producing-Carbapenem-Resistant-Enterobacteriaceae Detection. J Clin Microbiol. 2016;54(3):529–34. doi: 10.1128/JCM.02771-15 26739152

47. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30. doi: 10.1111/1469-0691.12719 24930781.

48. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106. doi: 10.1086/592412 18973455.

49. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–606. doi: 10.1093/jac/dks121 22499996.


Článek vyšel v časopise

PLOS One


2019 Číslo 12