Effects of treated wastewater on the ecotoxicity of small streams – Unravelling the contribution of chemicals causing effects


Autoři: Cornelia Kienle aff001;  Etiënne L. M. Vermeirssen aff001;  Andrea Schifferli aff001;  Heinz Singer aff002;  Christian Stamm aff002;  Inge Werner aff001
Působiště autorů: Swiss Centre for Applied Ecotoxicology, Dübendorf, Zürich, Switzerland aff001;  Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Zürich, Switzerland aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226278

Souhrn

Wastewater treatment plant effluents are important point sources of micropollutants. To assess how the discharge of treated wastewater affects the ecotoxicity of small to medium-sized streams we collected water samples up- and downstream of 24 wastewater treatment plants across the Swiss Plateau and the Jura regions of Switzerland. We investigated estrogenicity, inhibition of algal photosynthetic activity (photosystem II, PSII) and growth, and acetylcholinesterase (AChE) inhibition. At four sites, we measured feeding activity of amphipods (Gammarus fossarum) in situ as well as water flea (Ceriodaphnia dubia) reproduction in water samples. Ecotoxicological endpoints were compared with results from analyses of general water quality parameters as well as a target screening of a wide range of organic micropollutants with a focus on pesticides and pharmaceuticals using liquid chromatography high-resolution tandem mass spectrometry. Measured ecotoxicological effects in stream water varied substantially among sites: 17β-estradiol equivalent concentrations (EEQbio, indicating the degree of estrogenicity) were relatively low and ranged from 0.04 to 0.85 ng/L, never exceeding a proposed effect-based trigger (EBT) value of 0.88 ng/L. Diuron equivalent (DEQbio) concentrations (indicating the degree of photosystem II inhibition in algae) ranged from 2.4 to 1576 ng/L and exceeded the EBT value (70 ng/L) in one third of the rivers studied, sometimes even upstream of the WWTP. Parathion equivalent (PtEQbio) concentrations (indicating the degree of AChE inhibition) reached relatively high values (37 to 1278 ng/L) mostly exceeding the corresponding EBT (196 ng/L PtEQbio). Decreased feeding activity by amphipods or decreased water flea reproduction downstream compared to the upstream site was observed at one of four investigated sites only. Results of the combined algae assay (PSII inhibition) correlated best with results of chemical analysis for PSII inhibiting herbicides. Estrogenicity was partly and AChE inhibition strongly underestimated based on measured steroidal estrogens respectively organophosphate and carbamate insecticides. An impact of dissolved organic carbon on results of the AChE inhibition assay was obvious. For this assay more work is required to further explore the missing correlation of bioassay data with chemical analytical data. Overall, the discharge of WWTP effluent led to increased estrogenicity, PSII and AChE inhibition downstream, irrespective of upstream land use.

Klíčová slova:

Algae – Effluent – Herbicides – Chemical analysis – Rivers – Surface water – Water pollution – Ecotoxicology


Zdroje

1. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–7. doi: 10.1126/science.1127291 16931750

2. Tang JYM, Escher BI. Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: Herbicides dominate the mixture toxicity toward algae. Environmental Toxicology and Chemistry. 2014;33(6):1427–36. doi: 10.1002/etc.2580 24648273

3. Lewis M, Thursby G. Aquatic plants: Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA. Environ Pollut. 2018;238:270–80. doi: 10.1016/j.envpol.2018.03.003 29573709

4. Langer-Jaesrich M, Kienle C, Köhler HR, Gerhardt A. Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos. Ecotoxicology. 2010;19(7):1294–301. doi: 10.1007/s10646-010-0516-x 20628814

5. Tilton FA, Bammler TK, Gallagher EP. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(1):9–16. doi: 10.1016/j.cbpc.2010.07.008 20692364

6. Gauthier PT, Norwood WP, Prepas EE, Pyle GG. Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: Linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca. Aquat Toxicol. 2016;170:377–83. doi: 10.1016/j.aquatox.2015.10.019 26596825

7. Kienle C, Köhler HR, Gerhardt A. Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf. 2009;72(6):1740–7. doi: 10.1016/j.ecoenv.2009.04.014 19477011

8. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int. 2015;74:291–303. doi: 10.1016/j.envint.2014.10.024 25454246

9. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, et al. Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(21):8897–901. doi: 10.1073/pnas.0609568104 17517636

10. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2004;68(2):151–66. doi: 10.1016/j.aquatox.2004.03.015 15145225

11. Moschet C, Wittmer I, Simovic J, Junghans M, Piazzoli A, Singer H, et al. How a complete pesticide screening changes the assessment of surface water quality. Environmental Science and Technology. 2014;48(10):5423–32. doi: 10.1021/es500371t 24821647

12. Stamm C, Alder AC, Fenner K, Hollender J, Krauss M, McArdell CS, et al. Spatial and temporal patterns of pharmaceuticals in the aquatic environment: A review. Geogr Compass. 2008;2(3):920–55.

13. von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kuhne R, Ebert RU, et al. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Science of the Total Environment. 2011;409(11):2064–77. doi: 10.1016/j.scitotenv.2011.01.054 21414651

14. Wittmer IK, Bader HP, Scheidegger R, Singer H, Luck A, Hanke I, et al. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Research. 2010;44(9):2850–62. doi: 10.1016/j.watres.2010.01.030 20188390

15. Suresh Kumar K, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf. 2014;104(1):51–71.

16. Beketov MA, Liess M. Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry. 2008;27(2):461–70. doi: 10.1897/07-322R.1 18348641

17. Levin ED, Chrysanthis E, Yacisin K, Linney E. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicology and teratology. 2003;25(1):51–7. doi: 10.1016/s0892-0362(02)00322-7 12633736

18. Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, et al. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the Total Environment. 2013;461–462:480–98. doi: 10.1016/j.scitotenv.2013.05.034 23751332

19. Stalter D, Magdeburg A, Weil M, Knacker T, Oehlmann J. Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Research. 2010;44(2):439–48. doi: 10.1016/j.watres.2009.07.025 19665747

20. Eggen RI, Segner H. The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment. Analytical and bioanalytical chemistry. 2003;377(3):386–96. doi: 10.1007/s00216-003-2059-y 12923604

21. Triebskorn R, Amler K, Blaha L, Gallert C, Giebner S, Gude H, et al. SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany. Environ Sci Eur. 2013;25(1):2.

22. Schwartz P, Thorpe KL, Bucheli TD, Wettstein FE, Burkhardt-Holm P. Short-term exposure to the environmentally relevant estrogenic mycotoxin zearalenone impairs reproduction in fish. Science of the Total Environment. 2010;409(2):326–33. doi: 10.1016/j.scitotenv.2010.10.017 21056458

23. Sumpter JP. The ecotoxicology of hormonally active micropollutants. Water Science and Technology. 2008;57:125–30. doi: 10.2166/wst.2008.796 18192749

24. Harris CA, Hamilton PB, Runnalls TJ, Vinciotti V, Henshaw A, Hodgson D, et al. The consequences of feminization in breeding groups of wild fish. Environmental Health Perspectives. 2011;119(3):306–11. doi: 10.1289/ehp.1002555 21362587

25. Spänhoff B, Bischof R, Böhme A, Lorenz S, Neumeister K, Nöthlich A, et al. Assessing the impact of effluents from a modern wastewater treatment plant on breakdown of coarse particulate organic matter and benthic macroinvertebrates in a lowland river. Water Air Soil Pollut. 2007;180(1–4):119–29.

26. Liess M, Schafer RB, Schriever CA. The footprint of pesticide stress in communities-Species traits reveal community effects of toxicants. Science of the Total Environment. 2008;406(3):484–90. doi: 10.1016/j.scitotenv.2008.05.054 18653215

27. Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, et al. Pesticides from wastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment. 2017;599–600:387–99. doi: 10.1016/j.scitotenv.2017.03.008 28478367

28. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science. 2012;336(6087):1438–40. doi: 10.1126/science.1219534 22700929

29. Peschke K, Capowiez Y, Köhler HR, Wurm K, Triebskorn R. Impact of a wastewater treatment plant upgrade on amphipods and other macroinvertebrates: Individual and community responses. Front Environ Sci. 2019;7(May).

30. Henneberg A, Bender K, Blaha L, Giebner S, Kuch B, Kohler HR, et al. Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany. PLoS One. 2014;9(6):e98307. doi: 10.1371/journal.pone.0098307 24901835

31. Maier D, Blaha L, Giesy JP, Henneberg A, Kohler HR, Kuch B, et al. Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research. 2015;72(0):127–44.

32. Götz CW, Stamm C, Fenner K, Singer H, Schärer M, Hollender J. Targeting aquatic microcontaminants for monitoring: Exposure categorization and application to the Swiss situation. Environ Sci Pollut Res Int. 2010;17(2):341–54. doi: 10.1007/s11356-009-0167-8 19475441

33. Stamm C, Räsänen K, Burdon FJ, Altermatt F, Jokela J, Joss A, et al. Unravelling the impacts of micropollutants in aquatic ecosystems: interdisciplinary studies at the interface of large-scale ecology. Advances in ecological research: Academic Press Inc.; 2016. p. 183–223.

34. Munz NA, Burdon FJ, de Zwart D, Junghans M, Melo L, Reyes M, et al. Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Research. 2017;110:366–77. doi: 10.1016/j.watres.2016.11.001 27919541

35. Burdon FJ, Munz NA, Reyes M, Focks A, Joss A, Räsänen K, et al. Agriculture versus wastewater pollution as drivers of macroinvertebrate community structure in streams. Science of the Total Environment. 2019;659:1256–65. doi: 10.1016/j.scitotenv.2018.12.372 31096338

36. Munz NA, Fu Q, Stamm C, Hollender J. Internal concentrations in gammarids reveal increased risk of organic micropollutants in wastewater-impacted streams. Environmental Science and Technology. 2018.

37. Neale PA, Munz NA, Aїt-Aїssa S, Altenburger R, Brion F, Busch W, et al. Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Science of the Total Environment. 2017;576:785–95. doi: 10.1016/j.scitotenv.2016.10.141 27810763

38. Bundesgesetz über den Schutz der Gewässer (Gewässerschutzgesetz, GSchG) vom 24. Januar 1991 (Stand am 1. Januar 2017), 814.201 (1991).

39. Burdon FJ, Reyes M, Alder AC, Joss A, Ort C, Rasanen K, et al. Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams. Ecology and Evolution. 2016;6(12):3923–39. doi: 10.1002/ece3.2165 27516855

40. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environmental Science and Technology. 2009;43(18):7039–46. doi: 10.1021/es901979h 19806739

41. Schollee JE, Schymanski EL, Avak SE, Loos M, Hollender J. Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Anal Chem. 2015;87(24):12121–9. doi: 10.1021/acs.analchem.5b02905 26575699

42. Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A. 2012;1268:74–83. doi: 10.1016/j.chroma.2012.10.032 23137864

43. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science and Technology. 1998;32(11):1549–58.

44. Fernandez MP, Noguerol T-N, Lacorte S, Buchanan I, Piña B. Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay. Analytical and bioanalytical chemistry. 2009;393(3):957–68. doi: 10.1007/s00216-008-2516-8 19057898

45. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere. 2005;59(4):511–24. doi: 10.1016/j.chemosphere.2004.12.053 15788174

46. Vermeirssen ELM, Burki R, Joris C, Peter A, Segner H, Suter MJF, et al. Characterization of the estrogenicity of swiss midland rivers using a recombinant yeast bioassay and plasma vitellogenin concentrations in feral male brown trout. Environmental Toxicology and Chemistry. 2005;24(9):2226–33. doi: 10.1897/04-305r.1 16193750

47. Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishauser S, Vermeirssen ELM. Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. Journal of Environmental Monitoring. 2008;10(5):612–21. doi: 10.1039/b800949j 18449398

48. Simon E, Schifferli A, Bucher TB, Olbrich D, Werner I, Vermeirssen ELM. Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis—effects of sample volume on recoveries. Analytical and bioanalytical chemistry. 2019.

49. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM. Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. Journal of Environmental Monitoring. 2008;10(5):622–31. doi: 10.1039/b800951a 18449399

50. Routledge EJ, Sumpter JP. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry. 1996;15(3):241–8.

51. Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosensors & Bioelectronics. 2007;22(11):2554–63.

52. Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 1961;7(2):88–95.

53. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Suborganismische Testverfahren (Gruppe T)—Teil 1: Bestimmung von Cholinesterase-hemmenden Organophosphat und Carbamat-Pestiziden (Cholinesterase-Hemmtest) (T 1). DIN 38415–1, (1995).

54. Hamers T, Molin KR, Koeman JH, Murk AJ. A small-volume bioassay for quantification of the esterase inhibiting potency of mixtures of organophosphate and carbamate insecticides in rainwater: development and optimization. Toxicological sciences: an official journal of the Society of Toxicology. 2000;58(1):60–7.

55. Escher BI, Neale PA, Leusch FDL. Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values. Water Research. 2015;81:137–48. doi: 10.1016/j.watres.2015.05.049 26057261

56. Kunz PY, Simon E, Creusot N, Jayasinghe BS, Kienle C, Maletz S, et al. Effect-based tools for monitoring estrogenic mixtures: Evaluation of five in vitro bioassays. Water Research. 2017;110:378–88. doi: 10.1016/j.watres.2016.10.062 27836174

57. Spycher S, Mangold S, Doppler T, Junghans M, Wittmer I, Stamm C, et al. Pesticide risks in small streams–how to get as close as possible to the stress imposed on aquatic organisms. Environmental Science and Technology. 2018;52(8):4526–35. doi: 10.1021/acs.est.8b00077 29584952

58. Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, et al. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Science of the Total Environment. 2018;628–629:748–65. doi: 10.1016/j.scitotenv.2018.01.340 29454215

59. Kienle C, Vermeirssen E, Kunz P, Werner I. Grobbeurteilung der Wasserqualität mit Biotests - Ökotoxikologische Biotests zur Beurteilung von abwasserbelasteten Gewässern. Aqua & Gas. 2018;98(4):40–8.

60. Milligan SR, Balasubramanian AV, Kalita JC. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environmental Health Perspectives. 1998;106(1):23–6. doi: 10.1289/ehp.9810623 9417770

61. Segner H, Navas JM, Schäfers C, Wenzel A. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo. Ecotoxicol Environ Saf. 2003;54(3):315–22. doi: 10.1016/s0147-6513(02)00040-4 12651187

62. Tang JYM, Aryal R, Deletic A, Gernjak W, Glenn E, McCarthy D, et al. Toxicity characterization of urban stormwater with bioanalytical tools. Water Research. 2013;47(15):5594–606. doi: 10.1016/j.watres.2013.06.037 23863378

63. Kase R, Javurkova B, Simon E, Swart K, Buchinger S, Könemann S, et al. Screening and risk management solutions for steroidal estrogens in surface and wastewater. Trends Analyt Chem. 2018;102:343–58.

64. Vermeirssen EL, Hollender J, Bramaz N, van der Voet J, Escher BI. Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environmental Toxicology and Chemistry. 2010;29(11):2575–82. doi: 10.1002/etc.311 20853455

65. Bundschuh M, Zubrod JP, Schulz R. The functional and physiological status of Gammarus fossarum (Crustacea; Amphipoda) exposed to secondary treated wastewater. Environ Pollut. 2011;159(1):244–9. doi: 10.1016/j.envpol.2010.08.030 20932616

66. Kienle C, Kunz PY, Vermeirssen E, Homazava N, Werner I. Evaluation von Methoden für den effektbasierten Nachweis von Östrogen aktiven Substanzen in Abwasserreinigungsanlagen und Fliessgewässern. Studie im Auftrag des BAFU Schweizerisches Zentrum für angewandte Ökotoxikologie, Eawag-EPFL, Dübendorf, 2012.

67. Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, et al. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. Trends Analyt Chem. 2018;102:225–35.

68. Johnson AC, Aerni HR, Gerritsen A, Gibert M, Giger W, Hylland K, et al. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research. 2005;39(1):47–58. doi: 10.1016/j.watres.2004.07.025 15607163

69. Neale PA, Escher BI. Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays? Chemosphere. 2014;108:281–8. doi: 10.1016/j.chemosphere.2014.01.053 24530165

70. Neale PA, Escher BI. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay. Environmental Toxicology and Chemistry. 2013;32(7):1526–34. doi: 10.1002/etc.2196 23424099

71. Mineau P. Cholinesterase-inhibiting insecticides: their impact on wildlife and the environment: Elsevier; 1991.

72. Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, et al. An ecotoxicological view on neurotoxicity assessment. Environ Sci Eur. 2018;30(1).

73. Kunz PY, Kienle C, Carere M, Homazava N, Kase R. In vitro bioassays to screen for endocrine active pharmaceuticals in surface and waste waters. Journal of Pharmaceutical and Biomedical Analysis. 2015;106:107–15. doi: 10.1016/j.jpba.2014.11.018 25555519

74. Brion F, De Gussem V, Buchinger S, Hollert H, Carere M, Porcher J-M, et al. Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic (EASZY) assay: Comparison with in vitro cell-based assays and determination of effect-based trigger values. Environ Int. 2019;130:104896. doi: 10.1016/j.envint.2019.06.006 31195222

75. Junghans M, Langer M, Baumgartner C, Vermeirssen E, Werner I. Ökotoxikologische Untersuchungen: Risiko von PSM bestätigt. Aqua & Gas. 2019;99(4):26–34.


Článek vyšel v časopise

PLOS One


2019 Číslo 12