A δ2H Isoscape of blackberry as an example application for determining the geographic origins of plant materials in New Zealand

Autoři: Kiri McComb aff001;  Shaerii Sarker aff002;  Jurian Hoogewerff aff003;  Alan Hayman aff001;  Russell Frew aff001
Působiště autorů: Department of Chemistry, University of Otago, Dunedin, New Zealand aff001;  Global Proficiency Limited, Hamilton, New Zealand aff002;  Faculty of Science & Technology, University of Canberra, Canberra, Australia aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226152


In this investigation, two previously reported precipitation δ2H isoscapes for New Zealand were used to develop a δ2H isoscape for blackberry (Rubus sp.) leaf. These isoscapes were calibrated using the measured δ2H values of 120 authentic blackberry leaf samples collected from across the country. A regression model based on environmental variables available for New Zealand was also determined to predict δ2H values measured from blackberry leaves without initially modelling the precipitation δ2H values. The three models were compared for their accuracy and precision when assigning 10 samples of blackberry leaves for their geographic location based on their measured δ2H values. One of the models based on a precipitation isoscape was similar in accuracy and precision of assignment to the model determined from the environmental variables and provides an approach for determining valid isoscapes for future plant materials.

Klíčová slova:

Environmental geography – Islands – Leaves – Meteorology – New Zealand – Rain – Natural materials


1. Bowen GJ. Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annual Review of Earth and Planetary Sciences. 2010;38: 161–187. doi: 10.1146/annurev-earth-040809-152429

2. West JB, Bowen GJ, Ehleringer JR. Predicting Hydrogen and Oxygen Stable Isotope Ratios of Plants Across Terrestrial Surfaces: Plant IsoScapes. AGU Fall Meeting Abstracts. 2005;22: B22B–07.

3. Araguás‐Araguás L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes. 2000;14: 1341–1355. doi: 10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z

4. IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2019 [cited 10 Aug 2019]. Available: https://nucleus.iaea.org/wiser

5. Terzer S, Wassenaar LI, Araguás-Araguás LJ, Aggarwal PK. Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences. 2013;17: 4713–4728. doi: 10.5194/hess-17-4713-2013

6. Bowen GJ, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation: ISOTOPIC COMPOSITION OF MODERN PRECIPITATION. Water Resources Research. 2003;39. doi: 10.1029/2003WR002086

7. Bowen GJ, Wilkinson B. Spatial distribution of δ18O in meteoric precipitation. Geology. 2002;30: 315–318. doi: 10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2

8. van der Veer G, Voerkelius S, Lorentz G, Heiss G, Hoogewerff JA. Spatial interpolation of the deuterium and oxygen-18 composition of global precipitation using temperature as ancillary variable. Journal of Geochemical Exploration. 2009;101: 175–184. doi: 10.1016/j.gexplo.2008.06.008

9. Jouzel J, Hoffmann G, Koster RD, Masson V. Water isotopes in precipitation:: data/model comparison for present-day and past climates. Quaternary Science Reviews. 2000;19: 363–379. doi: 10.1016/S0277-3791(99)00069-4

10. Mathieu R, Pollard D, Cole JE, White JWC, Webb RS, Thompson SL. Simulation of stable water isotope variations by the GENESIS GCM for modern conditions. Journal of Geophysical Research: Atmospheres. 2002;107: ACL 2-1–ACL 2–18. doi: 10.1029/2001JD900255

11. Baisden WT, Keller ED, Hale RV, Frew RD, Wassenaar LI. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology. Isotopes in Environmental and Health Studies. 2016;52: 343–352. doi: 10.1080/10256016.2016.1153472 27007914

12. Frew Russell, Robert Van Hale Tony Moore, Darling Michael. A stable isotope rainfall map for the protection of New Zealand’s biological and environmental resources. 2011 p. 57.

13. Ehtesham E, Baisden WT, Keller ED, Hayman AR, Van Hale R, Frew RD. Correlation between precipitation and geographical location of the δ2H values of the fatty acids in milk and bulk milk powder. Geochimica et Cosmochimica Acta. 2013;111: 105–116. doi: 10.1016/j.gca.2012.10.026

14. Rogers KM, Wassenaar LI, Soto DX, Bartle JA. A feather-precipitation hydrogen isoscape model for New Zealand: implications for eco-forensics. Ecosphere. 2012;3: art62. doi: 10.1890/ES11-00343.1

15. Bowen GJ, Liu Z, Vander Zanden HB, Zhao L, Takahashi G. Geographic assignment with stable isotopes in IsoMAP. Kurle C, editor. Methods Ecol Evol. 2014;5: 201–206. doi: 10.1111/2041-210X.12147

16. Wunder MB, Norris DR. Chapter 8—Design and Analysis for Isotope-Based Studies of Migratory Animals. In: Hobson KA, Wassenaar LI, editors. Tracking Animal Migration with Stable Isotopes (Second Edition). Academic Press; 2019. pp. 191–206. doi: 10.1016/B978-0-12-814723-8.00008–8

17. Vander Zanden HB, Nelson DM, Wunder MB, Conkling TJ, Katzner T. Application of isoscapes to determine geographic origin of terrestrial wildlife for conservation and management. Biological Conservation. 2018;228: 268–280. doi: 10.1016/j.biocon.2018.10.019

18. Hren MT, Pagani M, Erwin DM, Brandon M. Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology. 2010;38: 7–10. doi: 10.1130/G30215.1

19. Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, et al. Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms. Annu Rev Earth Planet Sci. 2012;40: 221–249. doi: 10.1146/annurev-earth-042711-105535

20. Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta. 2004;68: 4877–4889. doi: 10.1016/j.gca.2004.06.004

21. Zhuang G, Brandon MT, Pagani M, Krishnan S. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth and Planetary Science Letters. 2014;390: 186–198. doi: 10.1016/j.epsl.2014.01.003

22. Brett MJ, Baldini JUL, Gröcke DR. Environmental controls on stable isotope ratios in New Zealand Podocarpaceae: Implications for palaeoclimate reconstruction. Global and Planetary Change. 2014;120: 38–45. doi: 10.1016/j.gloplacha.2014.05.010

23. Hou J, D’Andrea WJ, Huang Y. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochimica et Cosmochimica Acta. 2008;72: 3503–3517. doi: 10.1016/j.gca.2008.04.030

24. West JB, Kreuzer HW, Ehleringer JR. Approaches to Plant Hydrogen and Oxygen Isoscapes Generation. In: West JB, Bowen GJ, Dawson TE, Tu KP, editors. Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping. Dordrecht: Springer Netherlands; 2010. pp. 161–178. doi: 10.1007/978-90-481-3354-3_8

25. Roden JS, Lin G, Ehleringer JR. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta. 2000;64: 21–35. doi: 10.1016/S0016-7037(99)00195-7

26. Stern B, Moore CDL, Heron C, Pollard AM. Bulk Stable Light Isotopic Ratios in Recent and Archaeological Resins: Towards Detecting the Transport of Resins in Antiquity?*. Archaeometry. 2008;50: 351–370. doi: 10.1111/j.1475-4754.2007.00357.x

27. Kelly S, Heaton K, Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science & Technology. 2005;16: 555–567. doi: 10.1016/j.tifs.2005.08.008

28. Gori Y, Stradiotti A, Camin F. Timber isoscapes. A case study in a mountain area in the Italian Alps. Heinze B, editor. PLoS ONE. 2018;13: e0192970. doi: 10.1371/journal.pone.0192970 29451907

29. Booth AL, Wooller MJ, Howe T, Haubenstock N. Tracing geographic and temporal trafficking patterns for marijuana in Alaska using stable isotopes (C, N, O and H). Forensic Science International. 2010;202: 45–53. doi: 10.1016/j.forsciint.2010.04.025 20494534

30. Hurley JM, West JB, Ehleringer JR. Stable isotope models to predict geographic origin and cultivation conditions of marijuana. Science & Justice. 2010;50: 86–93. doi: 10.1016/j.scijus.2009.11.003 20470741

31. Cerling TE, Barnette JE, Bowen GJ, Chesson LA, Ehleringer JR, Remien CH, et al. Forensic Stable Isotope Biogeochemistry. Annual Review of Earth and Planetary Sciences. 2016;44: 175–206. doi: 10.1146/annurev-earth-060115-012303

32. Hurley JM, West JB, Ehleringer JR. Tracing retail cannabis in the United States: Geographic origin and cultivation patterns. International Journal of Drug Policy. 2010;21: 222–228. doi: 10.1016/j.drugpo.2009.08.001 19765966

33. Carter JF, Yates HSA, Tinggi U. A global survey of the stable isotope and chemical compositions of bottled and canned beers as a guide to authenticity. Science & Justice. 2015;55: 18–26. doi: 10.1016/j.scijus.2014.05.002 25577003

34. Carter JF, Yates HSA, Tinggi U. Stable Isotope and Chemical Compositions of European and Australasian Ciders as a Guide to Authenticity. J Agric Food Chem. 2015;63: 975–982. doi: 10.1021/jf5030054 25536876

35. Holder PW, Armstrong K, Van Hale R, Millet M-A, Frew R, Clough TJ, et al. Isotopes and Trace Elements as Natal Origin Markers of Helicoverpa armigera–An Experimental Model for Biosecurity Pests. Doucet D, editor. PLoS ONE. 2014;9: e92384. doi: 10.1371/journal.pone.0092384 24664236

36. Holder PW, Frew R, Van Hale R. The Geographic Origin of an Intercepted Biosecurity Pest Beetle Assigned Using Hydrogen Stable Isotopes. J Econ Entomol. 2015;108: 834–837. doi: 10.1093/jee/tou097 26470196

37. Wunder M. Using Isoscapes to Model Probability Surfaces for Determining Geographic Origins. Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping. 2010. pp. 251–270. doi: 10.1007/978-90-481-3354-3_12

38. Davis Mark, Meurk Colin. Protecting and restoring our natural heritage—a practical guide. Dept. of Conservation, New Zealand; 2001.

39. Maga JA, Squire CK, Hughes HG. Bramble Dried Leaf Volatiles. In: Charalambous G, editor. Developments in Food Science. Elsevier; 1992. pp. 145–148. doi: 10.1016/B978-0-444-88834-1.50016–8

40. Meier‐Augenstein W, Chartrand MMG, Kemp HF, St‐Jean G. An inter-laboratory comparative study into sample preparation for both reproducible and repeatable forensic 2H isotope analysis of human hair by continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry. 2011;25: 3331–3338. doi: 10.1002/rcm.5235 22006397

41. Qi H, Coplen TB. Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol. Rapid Commun Mass Spectrom. 2011;25: 2209–2222. doi: 10.1002/rcm.5095 21735504

42. Soto DX, Koehler G, Wassenaar LI, Hobson KA. Re-evaluation of the hydrogen stable isotopic composition of keratin calibration standards for wildlife and forensic science applications. Rapid Commun Mass Spectrom. 2017;31: 1193–1203. doi: 10.1002/rcm.7893 28475227

43. WorldClim—Global Climate Data | Free climate data for ecological modeling and GIS. [cited 23 Aug 2019]. Available: http://worldclim.org/

44. Virtual Climate Station data and products. In: NIWA [Internet]. 17 Aug 2012 [cited 23 Aug 2019]. Available: https://www.niwa.co.nz/climate/our-services/virtual-climate-stations

45. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017;37: 4302–4315. doi: 10.1002/joc.5086

46. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 2005;25: 1965–1978. doi: 10.1002/joc.1276

47. Tait A, Henderson R, Turner R, Zheng X. Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. International Journal of Climatology. 2006;26: 2097–2115. doi: 10.1002/joc.1350

48. Tait A, Woods R. Spatial Interpolation of Daily Potential Evapotranspiration for New Zealand Using a Spline Model. Journal of Hydrometeorology. 2007;8: 430–438. doi: 10.1175/JHM572.1

49. Courtiol A, Rousset F, Rohwäder M-S, Soto DX, Lehnert LS, Voigt CC, et al. Chapter 9—Isoscape Computation and Inference of Spatial Origins With Mixed Models Using the R package IsoriX. In: Hobson KA, Wassenaar LI, editors. Tracking Animal Migration with Stable Isotopes (Second Edition). Academic Press; 2019. pp. 207–236. doi: 10.1016/B978-0-12-814723-8.00009-X

50. Gareth James DW Trevor Hastie, Robert Tibshirani. An introduction to statistical learning: with applications in R. New York: Springer, [2013] ©2013; 2013. Available: https://search.library.wisc.edu/catalog/9910207152902121

51. Vander Zanden HB, Wunder MB, Hobson KA, Van Wilgenburg SL, Wassenaar LI, Welker JM, et al. Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. Kurle C, editor. Methods Ecol Evol. 2014;5: 891–900. doi: 10.1111/2041-210X.12229

52. Hobson KA, Wunder MB, Van Wilgenburg SL, Clark RG, Wassenaar LI. A Method for Investigating Population Declines of Migratory Birds Using Stable Isotopes: Origins of Harvested Lesser Scaup in North America. Rands S, editor. PLoS ONE. 2009;4: e7915. doi: 10.1371/journal.pone.0007915 19946360

53. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available: https://www.R-project.org.

Článek vyšel v časopise


2019 Číslo 12
Nejčtenější tento týden