Location of sources in reaction-diffusion equations using support vector machines


Autoři: Venecia Chávez-Medina aff001;  José A. González aff001;  Francisco S. Guzmán aff001
Působiště autorů: Laboratorio de Inteligencia Artificial y Supercómputo, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225593

Souhrn

The reaction-diffusion equation serves to model systems in the diffusion regime with sources. Specific applications include diffusion processes in chemical reactions, as well as the propagation of species, diseases, and populations in general. In some of these applications the location of an outbreak, for instance, the source point of a disease or the nest of a vector spreading a virus is important. Also important are the environmental parameters of the domain where the process diffuses, namely the space-dependent diffusion coefficient and the proliferation parameter of the process. Determining both, the location of a source and the environmental parameters, define an inverse problem that in turn, involves a partial differential equation. In this paper we classify the values of these parameters using Support Vector Machines (SVM) trained with numerical solutions of the reaction-diffusion problem. Our set up has accuracy of classifying the outbreak location above 90% and 77% of classifying both, the location and the environmental parameters. The approach presented in our analysis can be directly implemented by measuring the population under study at specific locations in the spatial domain as function of time.

Klíčová slova:

Artificial neural networks – Disease vectors – Epidemiology – Mass diffusivity – Support vector machines – Time domain analysis – Partial differential equations – Theoretical biology


Zdroje

1. Takahashi LT, Maidana NA, Castro Ferreira W, Pulino P, Yang HM. Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind Bull. Math. Biol 2005; 67:509–528. doi: 10.1016/j.bulm.2004.08.005

2. Tian C, Ruan S. A free boundary problem for Aedes aegypti mosquito invasion. Appl. Math. Modeling 2017; 46:203–217 doi: 10.1016/j.apm.2017.01.050

3. Lewis MA, Renclawowicz J, van den Driessche P. Traveling waves and spread rates for a West Nile Virus model 2006; Bull. Math. Biol. 68:3–23. doi: 10.1007/s11538-005-9018-z 16794919

4. Ou C, Wu J. Spatial spread of rabies revisited: influence of age-dependent diffusion on nonlinear dynamics. SIAM J. Appl. Math. 2006; 67:138–164. doi: 10.1137/060651318

5. Hilker FM, Langlais M, Petrovskii SV, Malchow H. A diffusive SI model with Allee effect and application to FIV. Math. Biosci. 2006; 206:61–80. doi: 10.1016/j.mbs.2005.10.003 16387332

6. Roques L, Bonnefon O. Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechinistic-Statistical Reaction-Diffusion Approach. PLoS ONE 2016; 11(3):e0151217. doi: 10.1371/journal.pone.0151217 26986201

7. Berendsen J, Burger M, Pietschmann JF. On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion. Nonlinear Analysis 2017; 159:10–39. doi: 10.1016/j.na.2017.03.010

8. Lewis MA, Petrovskii S, Potts JR. The Mathematics Behind Biological Invasions, Springer 2016.

9. Soubeyrand S, Roques L. Parameter estimation for reaction-diffusion models of biological invasions. Pop. Ecology 2014; 56(2):427–434. doi: 10.1007/s10144-013-0415-0

10. Madzvamuse A, Barreira R, Gerisch A. Cross-Diffusion in Reaction-Diffusion Models: Analysis, Numerics, and Applications. J. Math. Biol. 2015; 70(4):709–743.

11. Roitberg E, Shoshany M. Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations. PLoS ONE 2017;12(4): e0174942. doi: 10.1371/journal.pone.0174942 28394914

12. Araujo MB, Guisan A. Five (or so) challenges for species distribution modeling. J. Biogeogr. 2006; 33:1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x

13. Austin MP, Van Niel KP. Improving species distribution models for climate change studies: variable selection and scale. J. Biogeogr. 38, 1–8 (2011) doi: 10.1111/j.1365-2699.2010.02416.x

14. Carrillo M, Que U, González JA. Estimation of Reynolds number for flows around cylinders with lattice Boltzmann methods and artificial neural networks. Phys. Rev. E 2016; 94:063304. doi: 10.1103/PhysRevE.94.063304 28085295

15. Carrillo M, Que U, González JA, López CE. Recognition of an obstacle in a flow using artificial neural networks. Phys. Rev. E 2017; 96:023306. doi: 10.1103/PhysRevE.96.023306 28950464

16. Fisher RA. The wave of advance of advantageous genes. Annals of Eugenics 1937; 7(4):353–369. doi: 10.1111/j.1469-1809.1937.tb02153.x

17. Kolmogorov A, Petrovsy I, Piskounov N. Travelling Wave Solution of the Fisher-Kolmogorov Equation with Non-Linear Diffusion. Moscow University Mathematics Bulletin 1989; p 105.

18. Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1989; 83:3278. doi: 10.1016/0021-9991(89)90222-2

19. Shigesada N, Kawasaki K. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution, Oxford: Oxford University Press; 1997.

20. Beier P, Noss RF. Do habitat corridors provide connectivity? Conserv Biol. 1998;12(6):1241–1252. doi: 10.1111/j.1523-1739.1998.98036.x

21. Abe S Support Vector Machines for Pattern Classification. Springer, 2005.

22. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM transactions on intelligent systems and technology 2017; 2(3):1–27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

23. González JA, Guzmán FS. Classification of a black hole spin out of its shadow using support vector machines. Phys. Rev. D 2019; 99: 103002.

24. Rivera-Paleo FJ, López-Núñez CE, Guzmán FS, González JA. Classifying initial conditions of long GRBs modeled with relativistic radiation hydrodynamics. Phys. Rev. D 2017; 95:123005. doi: 10.1103/PhysRevD.95.123005

25. González JA, Guzmán FS. Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks. Phys. Rev. D 2018; 97:063001. doi: 10.1103/PhysRevD.97.063001


Článek vyšel v časopise

PLOS One


2019 Číslo 12