Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium


Autoři: Mariam Dayana Mohd Taha aff001;  Mohammad Fahrulazri Mohd Jaini aff001;  Noor Baity Saidi aff002;  Raha Abdul Rahim aff002;  Umi Kalsom Md Shah aff003;  Amalia Mohd Hashim aff001
Působiště autorů: Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia aff001;  Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia aff002;  Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224431

Souhrn

Dieback disease caused by Erwinia mallotivora is a major threat to papaya plantation in Malaysia. The current study was conducted to evaluate the potential of endophytic lactic acid bacteria (LAB) isolated from papaya seeds for disease suppression of papaya dieback. Two hundred and thirty isolates were screened against E. mallotivora BT-MARDI, and the inhibitory activity of the isolates against the pathogen was ranging from 11.7–23.7 mm inhibition zones. The synergistic experiments revealed that combination of W. cibaria PPKSD19 and Lactococcus lactis subsp. lactis PPSSD39 increased antibacterial activity against the pathogen. The antibacterial activity was partially due to the production of bacteriocin-like inhibitory substances (BLIS). The nursery experiment confirmed that the application of bacterial consortium W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 significantly reduced disease severity to 19% and increased biocontrol efficacy to 69% of infected papaya plants after 18 days of treatment. This study showed that W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 are potential candidate as biocontrol agents against papaya dieback disease.

Klíčová slova:

Antimicrobials – Bacterial pathogens – Consortia – Lactococcus lactis – Plant bacterial pathogens – Plant pathology – Papayas – Papaya trees


Zdroje

1. Krishnan P, Bhat R, Kush A, Ravikumar P. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol. 2012;113(2):308–17. doi: 10.1111/j.1365-2672.2012.05340.x 22587617

2. O’Hare TJ, Williams DJ. Papaya as a medicinal plant. In: Ming R, Moore PH, editors. Genetics and genomics of papaya. New York: Springer New York; 2014. p. 391–407.

3. FAOSTAT. Detailed trade data: Export quantity 2016. Food and Agriculture Organization of the United Nations Statistics Division. 2017.

4. Tridge. Overview of papaya trade in Malaysia. 2017.

5. Maktar NH, Kamis S, Mohd Yusof FZ, Hussain NH. Erwinia papayae causing papaya dieback in Malaysia. Plant Pathol. 2008;57(4):774–774.

6. Amin NM, Bunawan H, Redzuan RA, Jaganath IBS. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. Int J Mol Sci. 2010;12(1):39–45. doi: 10.3390/ijms12010039 21339975

7. Supian S, Saidi NB, Wee C-Y, Abdullah MP. Antioxidant-mediated response of a susceptible papaya cultivar to a compatible strain of Erwinia mallotivora. Physiol Mol Plant Pathol. 2017;98:37–45.

8. Mohd Khairil J, Muhammad Munzir M. Experiences in managing bacterial dieback disease of papaya in Malaysia. Acta Hortic. 2014;1022(16):125–32.

9. Bunawan H, Baharum SN. Papaya dieback in Malaysia: a step towards a new insight of disease resistance. Iran J Biotechnol. 2015;13(4):1–2. doi: 10.15171/ijb.1139 28959302

10. Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, et al. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic (Amsterdam). 2016;207:183–92.

11. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895–914.

12. Ting ASY. Biosourcing endophytes as biocontrol agents of wilt diseases. In: Verma VC, Gange AC, editors. Advances in endophytic research. New Delhi: Springer India; 2014. p. 283–300.

13. Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol. 2018;49:64–72. doi: 10.1016/j.copbio.2017.07.016 28830019

14. Linares-Morales JR, Gutiérrez-Méndez N, Rivera-Chavira BE, Pérez-Vega SB, Nevárez-Moorillón G V. Biocontrol processes in fruits and fresh produce, the use of lactic acid bacteria as a sustainable option. Front Sustain Food Syst. 2018;2(50):1–13.

15. Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36(1):1–29. doi: 10.1016/s0168-1605(96)01233-0 9168311

16. Lutz MP, Michel V, Martinez C, Camps C. Lactic acid bacteria as biocontrol agents of soil- borne pathogens. Biol Control Fungal Bact Plant Pathog. 2012;78:285–8.

17. Fhoula I, Najjari A, Turki Y, Jaballah S, Boudabous A, Ouzari H. Diversity and antimicrobial properties of lactic acid bacteria isolated from rhizosphere of olive trees and desert truffles of tunisia. Biomed Res Int. 2013;2013:1–14.

18. Kharazian ZA, Salehi Jouzani G, Aghdasi M, Khorvash M, Zamani M, Mohammadzadeh H. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control. 2017;110:33–43.

19. Shrestha A, Chun KC, Urn K, Hyun J, Cho S. Antagonistic effect of Lactobacillus sp. strain KLF01 against plant pathogenic bacteria Ralstonia solanacearum. Korean J Pestic Sci. 2009;13(1):45–53.

20. Trias R, Bañeras L, Montesinos E, Badosa E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol. 2008;11(4):231–6. doi: 10.2436/20.1501.01.66 19204894

21. Ghanbari M, Jami M, Domig KJ, Kneifel W. Seafood biopreservation by lactic acid bacteria–a review. LWT—Food Sci Technol. 2013;54(2):315–24.

22. Limanska N, Korotaeva N, Biscola V, Ivanytsia T, Merlich A, Franco B, et al. Study of the potential application of lactic acid bacteria in the control of infection caused by Agrobacterium tumefaciens. J Plant Pathol Microbiol. 2015;6(8):1–9.

23. Raupach GS, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 1998;88:1158–64. doi: 10.1094/PHYTO.1998.88.11.1158 18944848

24. Pandey P, Bisht S, Sood A, Aeron A, Sharma GD, Maheshwari DK. Consortium of plant growth-promoting bacteria: Future perspective in agriculture. In: Bacteria in Agrobiology: Plant Probiotics. 2012. p. 185–200.

25. Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology. 2008. p. 483–9. doi: 10.1016/j.tibtech.2008.05.004 18675483

26. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol. 2011;62(1):188–97. doi: 10.1007/s00248-011-9883-y 21625971

27. Crowley S, Mahony J, van Sinderen D. Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiol (Praha). 2013;58(4):291–9.

28. Ramesh R, Joshi AA, Ghanekar MP. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol. 2009;25(1):47–55.

29. Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S, Rasul G, et al. Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS One. 2016;11(8):1–19.

30. Smith AC, Hussey MA. Gram stain protocols. ASM MicrobeLibrary. 2005.

31. Reiner K. Catalase test protocol. ASM MicrobeLibrary. 2010.

32. Lee HM, Lee Y. A differential medium for lactic acid-producing bacteria in a mixed culture. Lett Appl Microbiol. 2008;46:676–81. doi: 10.1111/j.1472-765X.2008.02371.x 18444977

33. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989;17(19):7843–53. doi: 10.1093/nar/17.19.7843 2798131

34. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. doi: 10.1093/nar/22.22.4673 7984417

35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. doi: 10.1093/oxfordjournals.molbev.a040454 3447015

36. Latha P, Anand T, Ragupathi N, Prakasam V, Samiyappan R. Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control. 2009;50(2):85–93.

37. Valgas C, De Souza SM, Smânia EFA, Smânia A. Screening methods to determine antibacterial activity of natural products. Brazilian J Microbiol. 2007;(38):369–80.

38. Hwanhlem N, Chobert J-M, H-Kittikun A. Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: isolation, screening and optimization. Food Control. 2014;41:202–11.

39. Schillinger U, Lucke F-K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol. 1989;55(8):1901–6. 2782870

40. Barefoot SF, Klaenhammer TR. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol. 1983;45(6):1808–15. 6410990

41. Kempe J, Sequeira L. Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubers with bacteria. Plant Dis. 1983;67(5):499–503.

42. Trias R, Bañeras L, Badosa E, Montesinos E. Bioprotection of golden delicious apples and iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Int J Food Microbiol. 2008;123(1–2):50–60. doi: 10.1016/j.ijfoodmicro.2007.11.065 18191266

43. Roselló G, Bonaterra A, Francés J, Montesinos L, Badosa E, Montesinos E. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur J Plant Pathol. 2013;137(3):621–33.

44. Tsuda K, Tsuji G, Higashiyama M, Ogiyama H, Umemura K, Mitomi M, et al. Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol Control. 2016;100:63–9.

45. Shrestha A, Kim E-C, Lim C-K, Cho S-Y, Hur J-H, Park D-H. Biological control of soft rot on chinese cabbage using beneficial bacterial agents in greenhouse and field. Korean J Pestic Sci. 2009;13(4):325–31.

46. Visser R, Holzapfel WH, Bezuidenhout JJ, Kotzé JM. Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl Environ Microbiol. 1986;52(3):552–5. 16347150

47. Björkroth J, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, et al. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol. 2002;52(1):141–8.

48. Di Cagno R, Surico RF, Paradiso A, De Angelis M, Salmon J-C, Buchin S, et al. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. Int J Food Microbiol. 2009;128(3):473–83. doi: 10.1016/j.ijfoodmicro.2008.10.017 19028404

49. Di Cagno R, Minervini G, Rizzello CG, De Angelis M, Gobbetti M. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiol. 2011;28(5):1062–71. doi: 10.1016/j.fm.2011.02.011 21569953

50. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001;11:731–753. doi: 10.1101/gr.169701 11337471

51. Kelly WJ, Davey GP, Ward LJH. Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. Int J Food Microbiol. 1998;45(2):85–92. doi: 10.1016/s0168-1605(98)00135-4 9924939

52. Ennahar S, Cai Y, Fujita Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl Environ Microbiol. 2003;69(1):444–51. doi: 10.1128/AEM.69.1.444-451.2003 12514026

53. Siezen RJ, Bayjanov J, Renckens B, Wels M, Hijum SAFT van, Molenaar D, et al. Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium. J Bacteriol. 2010;192(10):2649–50. doi: 10.1128/JB.00276-10 20348266

54. Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL. From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem. 2017;111:1–9.

55. Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci. 2018;9(24):1–10.

56. Emerenini EC, Afolabi OR, Okolie PI, Akintokun AK. In vitro studies on antimicrobial activities of lactic acid bacteria isolated from fresh vegetables for biocontrol of tomato pathogens. Br Microbiol Res J. 2014;4(3):351–9.

57. Jetiyanon K, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control. 2002;24(3):285–91.

58. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, et al. Abiotic stress responses and microbe-mediated mitigation in plants: The Omics strategies. Front Plant Sci. 2017;8(172):1–25.

59. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol. 2005;71(11):7099–106. doi: 10.1128/AEM.71.11.7099-7106.2005 16269746

60. Janisiewicz W. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology. 1996;86(5):473–9.

61. Raaijmakers JM, Sluis L van der, Bakker PAHM, Schippers B, Koster M, Weisbeek PJ. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol. 1995;41(2):126–35.

62. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control. 2009;50(3):205–21.

63. Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol. 2011;60(6):999–1013.

64. Hor YY, Liong MT. Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatologica Sin. 2014;32(3):141–7.

65. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12(1–3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x 8398217

66. Park S-H, Itoh K, Kikuchi E, Niwa H, Fujisawa T. Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from Kimchi. Curr Microbiol. 2003;46(5):385–8. doi: 10.1007/s00284-002-3898-z 12732968

67. Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from Plaa-som, a fermented fish product from Thailand. Appl Environ Microbiol. 2007;73(7):2247–50. doi: 10.1128/AEM.02484-06 17293526

68. Preciado GM, Michel MM, Villarreal-Morales SL, Flores-Gallegos AC, Aguirre-Joya J, Morlett-Chávez J, et al. Bacteriocins and its use for multidrug-resistant bacteria control. Antibiot Resist. 2016;329–49.

69. Kruger MF, Barbosa M de S, Miranda A, Landgraf M, Destro MT, Todorov SD, et al. Isolation of bacteriocinogenic strain of Lactococcus lactis subsp. lactis from rocket salad (Eruca sativa Mill.) and evidences of production of a variant of nisin with modification in the leader-peptide. Food Control. 2013;33(2):467–76.

70. Fukui R, Schroth MN, Hendson M, Hancock JG. Interaction between strains of Pseudomonads in sugar beet spermospheres and their relationship to pericarp colonization by Pythium ultimum in soil. Phytopathology. 1994;84(11):1322–30.

71. Xue Q-Y, Ding G-C, Li S-M, Yang Y, Lan C-Z, Guo J-H, et al. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains–an improved strategy for selecting biocontrol agents. Appl Microbiol Biotechnol. 2013;97(3):1361–71. doi: 10.1007/s00253-012-4021-4 22526784

72. Xu X-M, Jeger MJ. Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions. Phytopathology. 2013;103(8):768–75. doi: 10.1094/PHYTO-10-12-0266-R 23617339

73. Visser R, Holzapfel WH. Lactic acid bacteria in the control of plant pathogens. In: Wood BJB, editor. The lactic acid bacteria volume 1. Boston, MA: Springer US; 1992. p. 193–210.


Článek vyšel v časopise

PLOS One


2019 Číslo 12