Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach

Autoři: Isabelle Bartram aff001;  Jonathan M. Jeschke aff001
Působiště autorů: Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany aff001;  Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Freie Universität Berlin, Berlin, Germany aff002;  Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin, Germany aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225898


The phenomenon of cancer cell heterogeneity has been explained by different hypotheses, each entailing different therapy strategies. The most recent is the cancer stem cell model, which says that tumourigenicity and self-renewal are restricted to rare stem cell-like cancer cells. Since its conception, conflicting evidence has been published. In this study, we tested the applicability of a new approach developed in the field of ecology, the hierarchy-of-hypotheses approach, for the Cancer Stem Cell hypothesis. This approach allows to structure a broad concept into more specific sub-hypotheses, which in turn can be connected to available empirical studies. To generate a dataset with empirical studies, we conducted a systematic literature review in the Web of Science limited to the first 1000 publications returned by the search. From this pool, 51 publications were identified that tested whether a cell sub-population had cancer stem cell properties. By classifying the studies according to: (1) assessed indicators, (2) experimental assays and (3) model cancer cells used, we built a hierarchical structure of sub-hypotheses. The empirical tests from the selected studies were subsequently assigned to this hierarchy of hypotheses, and the percentage of supporting, undecided and questioning evidence was calculated for each sub-hypothesis, as well as additional experimental characteristics. Our approach successfully allowed us to determine that within our dataset, the empirical support for the CSC hypothesis was only 49.0%. The support of different sub-hypotheses was highly variable. Most noticeable, the conception that putative cancer stem cells are a rare subset of cells could not be confirmed by most studies (13.5% support). The empirical support varied also between types of cancer, animal models and cell isolation method used. For the first time, this study showed the applicability of the hierarchy-of-hypotheses approach for synthesizing and evaluating empirical evidence for a broad hypothesis in the field of bio-medical research.

Klíčová slova:

Animal models of disease – Cancer stem cells – Mouse models – Research reporting guidelines – Stem cell therapy – Systematic reviews – Tumor stem cells


1. Nowell PC. The Clonal Evolution of Tumor Cell Populations. Science. 1976 Oct 1;194(4260): 23–28. doi: 10.1126/science.959840 959840

2. Fialkow PJ. Clonal origin of human tumors. Biochim Biophys Acta. 1976 Oct 12;458(3): 283–321. doi: 10.1016/0304-419x(76)90003-2 1067873

3. Heppner GH. Tumor heterogeneity. Cancer Res. 1984 Jun;44(6):2259–65. 6372991

4. Bruce WR, Van der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963 Jul 6;199: 79–80. doi: 10.1038/199079a0 14047954

5. Hamburger AW. Primary bioassay of human tumor stem cells. Science 1977 Jul 29;197(4302): 461–463. doi: 10.1126/science.560061 560061

6. Fidler I, Hart I. Biological diversity in metastatic neoplasms: origins and implications. Science 1982 Sep 10;217(4564): 998–1003. doi: 10.1126/science.7112116 7112116

7. Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 1997 Jul;3(7): 730–737. doi: 10.1038/nm0797-730 9212098

8. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001 Nov 1;414(6859): 105–111. doi: 10.1038/35102167 11689955

9. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003 Dec;3(12): 895–902. doi: 10.1038/nrc1232 14737120

10. Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry A. 2013 Jan;83(1): 62–71. doi: 10.1002/cyto.a.22206 22997049

11. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007 Nov;7(11): 834–846. doi: 10.1038/nrc2256 17957189

12. Vinogradova TV, Chernov IP, Monastyrskaya GS, Kondratyeva LG, Sverdlov ED. Cancer stem cells: plasticity works against therapy. Acta Naturae. 2015 Oct-Dec;7(4): 46–55. 26798491

13. Quintana S, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumor formation by single human melanoma cells. Nature 2008 Dec 4;456(7222): 593–598. doi: 10.1038/nature07567 19052619

14. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010 Nov 16;18(5): 510–523. doi: 10.1016/j.ccr.2010.10.012 21075313

15. Piccirillo SGM, Combi R, Cajola L, Redaelli A, Bentivegna S, Baronchelli A et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 2009 Apr 16;28(15): 1807–1811. doi: 10.1038/onc.2009.27 19287454

16. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011 Jan 18;19(1): 138–152. doi: 10.1016/j.ccr.2010.12.012 21251617

17. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011 Aug 19;146(4): 633–644. doi: 10.1016/j.cell.2011.07.026 21854987

18. Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol. 2017 Jun;44: 25–42. doi: 10.1016/j.semcancer.2017.03.003 28323021

19. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009 Sep 4;138(5): 822–829. doi: 10.1016/j.cell.2009.08.017 19737509

20. Chen K, Huang Y, Chen J. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013 Jun;34(6): 732–740. doi: 10.1038/aps.2013.27 23685952

21. Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y et al. Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches. Stem Cells. 2015 Jul;33(7): 2085–2092. doi: 10.1002/stem.2039 25873269

22. Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev. 2017 Oct 1;120: 89–107. doi: 10.1016/j.addr.2017.07.013 28736304

23. Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA. The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery. 2011 Feb;68(2): 531–545. doi: 10.1227/NEU.0b013e3181ff9eb5 21135745

24. Rocco A, Compare D, Nardone G. Cancer stem cell hypothesis and gastric carcinogenesis: Experimental evidence and unsolved questions. World J Gastrointest Oncol. 2012 Mar 15;4(3): 54–59. doi: 10.4251/wjgo.v4.i3.54 22468184

25. Kaiser J. The cancer stem cell gamble. Science. 2015 Jan 16;347(6219): 226–229. doi: 10.1126/science.347.6219.226 25593170

26. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Converting among effect sizes. In: Introduction to Meta-Analysis. West Sussex, England: John Wiley & Sons, Ltd.; 2009: 45–49.

27. Jeschke JM, Gómez Aparicio L, Haider S, Heger T, Lortie C, Pyšek P et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota. 2012 Aug;14: 1–20. doi: 10.3897/neobiota.14.3435

28. Ryo M, Jeschke JM, Rillig M.C., Heger T. Machine learning with the hierarchy-of-hypotheses (HoH) approach discovers novel pattern in studies on biological invasions. Research Synthesis Methods. 2019 June; 1–8. doi: 10.1002/jrsm.1363 31219681

29. Heger T, Jeschke JM. The enemy release hypothesis as a hierarchy of hypotheses. Oikos. 2014 Feb;123: 741–750. doi: 10.1111/j.1600-0706.2013.01263.x

30. Jeschke JM, Heger T. Invasion Biology: Hypotheses and Evidence. Wallingford, UK: CABI; 2018.

31. Heger T, Aguilar C, Bartram I, Braga RR, Dietl GP, Enders M et al. The hierarchy-of-hypotheses approach: A synthesis method for enhancing theory development in ecology and evolution. EcoEvoRxiv. 2019 July 29; 1–36. doi: 10.32942/

32. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015 Jan 1;4: 1. doi: 10.1186/2046-4053-4-1 25554246

33. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013 Oct;13(10): 727–738. doi: 10.1038/nrc3597 24060864

34. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL et al. Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 2006 Oct 1;66(19): 9339–9344. doi: 10.1158/0008-5472.CAN-06-3126 16990346

35. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. May 2001;4(1): 1–9.

36. Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human Cancer Growth and Therapy In NOD/SCID/IL2Rγnull (NSG) Mice. Cold Spring Harb Protoc. 2014 Jul 2014;(7): 694–708. doi: 10.1101/pdb.top073585 24987146

37. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018 Aug;560(7718): 325–330. doi: 10.1038/s41586-018-0409-3 30089904

38. Ioannidis JPA. Why most published research findings are false. PLoS Medicine 2005;2: e124. doi: 10.1371/journal.pmed.0020124 16060722

39. Schooler J. Unpublished results hide the decline effect. Nature. 2011 Feb 24;470(7335): 437. doi: 10.1038/470437a 21350443

40. Lose G, Klarskov N. Why published research is untrustworthy. Int Urogynecol J. 2017 Sep;28(9): 1271–1274. doi: 10.1007/s00192-017-3389-1 28707207

41. Jeschke JM, Lokatis S, Bartram I, Tockner K. Knowledge in the dark: scientific challenges and ways forward. FACETS. 2019;4, 1–19. doi: 10.1139/facets-2019-0007

42. Begley CG, Ellis LM. Raise standards for preclinical cancer research. Nature. 2012 Mar 28;483(7391): 531–533. doi: 10.1038/483531a 22460880

43. Schott T. Interpersonal influence in science: mathematicians in Denmark and Israel, Social Networks. 1987 Dec;9: 351–374. doi: 10.1016/0378-8733(87)90004-9

44. Newman MEJ. Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA. 2004 Apr 6;101: 5200–5205. doi: 10.1073/pnas.0307545100 14745042

45. Crane D. Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Chicago, USA: University of Chicago Press; 1972.

46. Rawlings CM. Streams of Thought: Knowledge Flows and Intellectual Cohesion in a Multidisciplinary Era. Social Forces. 2015 Jun;93: 1687–1722. doi: 10.1093/sf/sov004

47. Lokatis S, Jeschke JM. The island rule: an assessment of biases and research trends. J. Biogeogr. 2018 Jan 09;45: 289–303. doi: 10.1111/jbi.13160

Článek vyšel v časopise


2019 Číslo 12