Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients

Autoři: Eirini Papadopoulou aff001;  Nikolaos Tsoulos aff001;  Katerina Tsantikidi aff001;  Vasiliki Metaxa-Mariatou aff001;  Pinelopi Eleftheria Stamou aff001;  Athina Kladi-Skandali aff001;  Evgenia Kapeni aff001;  Georgios Tsaousis aff001;  George Pentheroudakis aff002;  Dimitrios Petrakis aff002;  Dimitra Ioanna Lampropoulou aff004;  Gerasimos Aravantinos aff004;  Ioannis Varthalitis aff005;  George Kesisis aff006;  Ioannis Boukovinas aff007;  Pavlos Papakotoulas aff008;  Nikolaos Katirtzoglou aff009;  Elias Athanasiadis aff010;  Flora Stavridi aff011;  Christos Christodoulou aff012;  Anna Koumarianou aff013;  Yeşim Eralp aff014;  George Nasioulas aff001
Působiště autorů: GeneKor MSA, Athens, Greece aff001;  Department of Medical Oncology, School of Medicine, Ioannina, Greece aff002;  Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece aff003;  Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece aff004;  1st Oncology Department Henry Dunant Hospital Center, Athens, Greece aff005;  Oncology Department, Saint Luke Private Hospital, Thessaloniki, Greece aff006;  BioClinic Thessaloniki, Thessaloniki, Greece aff007;  First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece aff008;  Euroclinic, Athens, Greece aff009;  Department of Medical Oncology, Mitera Hospital, Athens, Greece aff010;  Fourth Department of Medical Oncology, Hygeia Hospital, Athens, Greece aff011;  Second Department of Medical Oncology, Metropolitan Hospital, Athens, Greece aff012;  Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece aff013;  Department of Medical Oncology, Istanbul University School of Medicine, İstanbul, Turkey aff014
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226853



Analysis of circulating tumor nucleic acids in plasma of Non-Small Cell Lung Cancer (NSCLC) patients is the most widespread and documented form of "liquid biopsy" and provides real-time information on the molecular profile of the tumor without an invasive tissue biopsy.


Liquid biopsy analysis was requested by the referral physician in 121 NSCLC patients at diagnosis and was performed using a sensitive Next Generation Sequencing assay. Additionally, a comparative analysis of NSCLC patients at relapse following EGFR Tyrosine Kinase Inhibitor (TKIs) treatment was performed in 50 patients by both the cobas and NGS platforms.


At least one mutation was identified in almost 49% of the cases by the NGS approach in NSCLC patients analyzed at diagnosis. In 36 cases with paired tissue available a high concordance of 86.11% was observed for clinically relevant mutations, with a Positive Predictive Value (PPV) of 88.89%. Furthermore, a concordance rate of 82% between cobas and the NGS approach for the EGFR sensitizing mutations (in exons 18, 19, 21) was observed in patients with acquired resistance to EGFR TKIs, while this concordance was 94% for the p.T790M mutation, with NGS being able to detect this mutation in three 3 additional patients.


This study indicates the feasibility of circulating tumor nucleic acids (ctNA) analysis as a tumor biopsy surrogate in clinical practice for NSCLC personalized treatment decision making. The use of new sensitive NGS techniques can reliably detect tumor-derived mutations in liquid biopsy and provide clinically relevant information both before and after targeted treatment in patients with NSCLC. Thus, it could aid physicians in treatment decision making in clinical practice.

Klíčová slova:

Biomarkers – Biopsy – Cancer treatment – Mutation – Mutation detection – Mutational analysis – Next-generation sequencing – Non-small cell lung cancer


1. Garinet S, Laurent-Puig P, Blons H, Oudart JB. Current and Future Molecular Testing in NSCLC, What Can We Expect from New Sequencing Technologies? J Clin Med. 2018;7(6).

2. Coco S, Truini A, Vanni I, Dal Bello MG, Alama A, Rijavec E, et al. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine. Curr Drug Targets. 2015;16(1):47–59. doi: 10.2174/1389450116666141210094640 25495923

3. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin Cancer Res. 2016;22(23):5772–82. doi: 10.1158/1078-0432.CCR-16-1231 27601595

4. Kruglyak KM, Lin E, Ong FS. Next-Generation Sequencing and Applications to the Diagnosis and Treatment of Lung Cancer. Adv Exp Med Biol. 2016;890:123–36. doi: 10.1007/978-3-319-24932-2_7 26703802

5. Zhang P, Lehmann BD, Shyr Y, Guo Y. The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies. Int J Genomics. 2017;2017:1926304. doi: 10.1155/2017/1926304 28246590

6. Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P. Unlocking the archive—gene expression in paraffin-embedded tissue. J Pathol. 2001;195(1):66–71. doi: 10.1002/1096-9896(200109)195:1<66::AID-PATH921>3.0.CO;2-F 11568892

7. Shin HT, Choi YL, Yun JW, Kim NKD, Kim SY, Jeon HJ, et al. Prevalence and detection of low-allele-fraction variants in clinical cancer samples. Nat Commun. 2017;8(1):1377. doi: 10.1038/s41467-017-01470-y 29123093

8. Walsh K, Wallace WA. Molecular pathology in lung cancer: a guide to the techniques used in clinical practice. Histopathology. 2014;65(6):731–41. doi: 10.1111/his.12505 25130601

9. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64. doi: 10.1038/nature12627 24048068

10. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64–71. doi: 10.1373/clinchem.2014.223040 25421801

11. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17(1):38. doi: 10.1186/s12943-018-0777-1 29455650

12. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21(7):827.

13. Giampieri R, Scartozzi M, Del Prete M, Maccaroni E, Bittoni A, Faloppi L, et al. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation. Crit Rev Oncol Hematol. 2013;88(2):272–83. doi: 10.1016/j.critrevonc.2013.05.008 23806981

14. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46(5):318–22. doi: 10.1159/000226740 2779946

15. Dominguez-Vigil IG, Moreno-Martinez AK, Wang JY, Roehrl MHA, Barrera-Saldana HA. The dawn of the liquid biopsy in the fight against cancer. Oncotarget. 2018;9(2):2912–22. doi: 10.18632/oncotarget.23131 29416824

16. Mathai RA, Vidya RVS, Reddy BS, Thomas L, Udupa K, Kolesar J, et al. Potential Utility of Liquid Biopsy as a Diagnostic and Prognostic Tool for the Assessment of Solid Tumors: Implications in the Precision Oncology. J Clin Med. 2019;8(3).

17. Francis G, Stein S. Circulating Cell-Free Tumour DNA in the Management of Cancer. Int J Mol Sci. 2015;16(6):14122–42. doi: 10.3390/ijms160614122 26101870

18. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. doi: 10.1038/nrclinonc.2013.110 23836314

19. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88. doi: 10.1038/s41576-018-0071-5 30410101

20. Komatsubara KM, Sacher AG. Circulating Tumor DNA as a Liquid Biopsy: Current Clinical Applications and Future Directions. Oncology (Williston Park). 2017;31(8):618–27.

21. Cabel L, Proudhon C, Mariani P, Tzanis D, Beinse G, Bieche I, et al. Circulating tumor cells and circulating tumor DNA: What surgical oncologists need to know? Eur J Surg Oncol. 2017;43(5):949–62. doi: 10.1016/j.ejso.2017.01.010 28185687

22. Keppens C, Palma JF, Das PM, Scudder S, Wen W, Normanno N, et al. Detection of EGFR Variants in Plasma: A Multilaboratory Comparison of a Real-Time PCR EGFR Mutation Test in Europe. J Mol Diagn. 2018;20(4):483–94. doi: 10.1016/j.jmoldx.2018.03.006 29704571

23. Xu T, Kang X, You X, Dai L, Tian D, Yan W, et al. Cross-Platform Comparison of Four Leading Technologies for Detecting EGFR Mutations in Circulating Tumor DNA from Non-Small Cell Lung Carcinoma Patient Plasma. Theranostics. 2017;7(6):1437–46. doi: 10.7150/thno.16558 28529628

24. Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9(9):1345–53. doi: 10.1097/JTO.0000000000000263 25122430

25. Guibert N, Hu Y, Feeney N, Kuang Y, Plagnol V, Jones G, et al. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann Oncol. 2018;29(4):1049–55. doi: 10.1093/annonc/mdy005 29325035

26. Stewart EL, Tan SZ, Liu G, Tsao MS. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67–81. doi: 10.3978/j.issn.2218-6751.2014.11.06 25806347

27. Dono M, De Luca G, Lastraioli S, Anselmi G, Dal Bello MG, Coco S, et al. Tag-based next generation sequencing: a feasible and reliable assay for EGFR T790M mutation detection in circulating tumor DNA of non small cell lung cancer patients. Mol Med. 2019;25(1):15. doi: 10.1186/s10020-019-0082-5 31029076

28. Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A, Mach SL, et al. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients. Clin Cancer Res. 2016;22(4):915–22. doi: 10.1158/1078-0432.CCR-15-1627-T 26459174

29. Tsoulos N, Papadopoulou E, Metaxa-Mariatou V, Tsaousis G, Efstathiadou C, Tounta G, et al. Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncology reports. 2017;38(6):3419–29. doi: 10.3892/or.2017.6051 29130105

30. Leventakos K, Kipp BR, Rumilla KM, Winters JL, Yi ES, Mansfield AS. S768I Mutation in EGFR in Patients with Lung Cancer. J Thorac Oncol. 2016;11(10):1798–801. doi: 10.1016/j.jtho.2016.05.007 27211795

31. Aggarwal C, Thompson JC, Black TA, Katz SI, Fan R, Yee SS, et al. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019;5(2):173–80. doi: 10.1001/jamaoncol.2018.4305 30325992

32. Zhang YC, Zhou Q, Wu YL. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer. J Hematol Oncol. 2017;10(1):167. doi: 10.1186/s13045-017-0536-6 29061113

33. Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res. 2016;5(5):505–10. doi: 10.21037/tlcr.2016.10.08 27826531

34. Volckmar AL, Sultmann H, Riediger A, Fioretos T, Schirmacher P, Endris V, et al. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosomes Cancer. 2018;57(3):123–39. doi: 10.1002/gcc.22517 29205637

35. Hofman P, Popper HH. Pathologists and liquid biopsies: to be or not to be? Virchows Arch. 2016;469(6):601–9. doi: 10.1007/s00428-016-2004-z 27553354

36. Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J. 2018;16:370–8. doi: 10.1016/j.csbj.2018.10.002 30364656

37. Bartels S, Persing S, Hasemeier B, Schipper E, Kreipe H, Lehmann U. Molecular Analysis of Circulating Cell-Free DNA from Lung Cancer Patients in Routine Laboratory Practice: A Cross-Platform Comparison of Three Different Molecular Methods for Mutation Detection. J Mol Diagn. 2017;19(5):722–32. doi: 10.1016/j.jmoldx.2017.05.008 28723342

38. Vollbrecht C, Lehmann A, Lenze D, Hummel M. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget. 2018;9(26):18529–39. doi: 10.18632/oncotarget.24908 29719623

39. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269–85. doi: 10.1038/nrg.2017.117 29576615

40. Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18(18):4910–8. doi: 10.1158/1078-0432.CCR-12-0912 22761469

41. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J Clin Oncol. 2016;34(7):721–30. doi: 10.1200/JCO.2015.63.4600 26729443

42. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9. doi: 10.1158/2159-8290.CD-15-0285 25971938

43. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol. 2009;4(1):5–11. doi: 10.1097/JTO.0b013e3181913e0e 19096300

44. Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–9. doi: 10.1038/sj.bjc.6602258 15597105

45. Garzon M, Villatoro S, Teixido C, Mayo C, Martinez A, de Los Llanos Gil M, et al. KRAS mutations in the circulating free DNA (cfDNA) of non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res. 2016;5(5):511–6. doi: 10.21037/tlcr.2016.10.14 27826532

46. Wood K, Hensing T, Malik R, Salgia R. Prognostic and Predictive Value in KRAS in Non-Small-Cell Lung Cancer: A Review. JAMA Oncol. 2016;2(6):805–12. doi: 10.1001/jamaoncol.2016.0405 27100819

47. Li BT, Janku F, Jung B, Hou C, Madwani K, Alden R, et al. Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: results from the Actionable Genome Consortium. Ann Oncol. 2019;30(4):597–603. doi: 10.1093/annonc/mdz046 30891595

48. Anagnostou V, Forde PM, White JR, Niknafs N, Hruban C, Naidoo J, et al. Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. Cancer Res. 2019;79(6):1214–25. doi: 10.1158/0008-5472.CAN-18-1127 30541742

49. Aggarwal C, Thompson JC, Black TA, Katz SI, Fan R, Yee SS, et al. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2018.

50. Oellerich M, Schutz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017;54(3):205–18. doi: 10.1080/10408363.2017.1299683 28393575

51. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7(283):283ra54. doi: 10.1126/scitranslmed.aaa1408 25877892

52. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH, 3rd. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr. 1990;52(5):878–88. doi: 10.1093/ajcn/52.5.878 2239765

53. Kim L, Tsao MS. Tumour tissue sampling for lung cancer management in the era of personalised therapy: what is good enough for molecular testing? Eur Respir J. 2014;44(4):1011–22. doi: 10.1183/09031936.00197013 25102961

54. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J Clin Oncol. 2018;36(24):2532–7. doi: 10.1200/JCO.2018.77.9777 29989854

55. Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A Highly Sensitive and Quantitative Test Platform for Detection of NSCLC EGFR Mutations in Urine and Plasma. J Thorac Oncol. 2016;11(10):1690–700. doi: 10.1016/j.jtho.2016.05.035 27468937

56. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2019;380(20):1929–40. doi: 10.1056/NEJMoa1813904 31091374

57. Ricciuti B. Osimertinib for EGFR-mutant non-small cell lung cancer: place in therapy and future perspectives. J Thorac Dis. 2019;11(Suppl 3):S249–S52. doi: 10.21037/jtd.2019.01.104 30997189

58. FDA. FDA approves osimertinib for first-line treatment of metastatic NSCLC with most common EGFR mutations 2018 [04/19/2018]. Available from:

59. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2018;378(2):113–25. doi: 10.1056/NEJMoa1713137 29151359

60. Lissa D, Robles AI. Comprehensive genomic analysis of circulating tumor DNA for patients with advanced non-small cell lung cancer. Ann Transl Med. 2019;7(5):80. doi: 10.21037/atm.2018.12.57 31019930

61. Stockley T, Souza CA, Cheema PK, Melosky B, Kamel-Reid S, Tsao MS, et al. Evidence-based best practices for EGFR T790M testing in lung cancer in Canada. Curr Oncol. 2018;25(2):163–9. doi: 10.3747/co.25.4044 29719432

62. Pennell NA, Arcila ME, Gandara DR, West H. Biomarker Testing for Patients With Advanced Non-Small Cell Lung Cancer: Real-World Issues and Tough Choices. Am Soc Clin Oncol Educ Book. 2019;39:531–42. doi: 10.1200/EDBK_237863 31099633

63. Passiglia F, Rizzo S, Di Maio M, Galvano A, Badalamenti G, Listi A, et al. The diagnostic accuracy of circulating tumor DNA for the detection of EGFR-T790M mutation in NSCLC: a systematic review and meta-analysis. Sci Rep. 2018;8(1):13379. doi: 10.1038/s41598-018-30780-4 30190486

64. Del Re M, Tiseo M, Bordi P, D'Incecco A, Camerini A, Petrini I, et al. Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. Oncotarget. 2017;8(8):13611–9. doi: 10.18632/oncotarget.6957 26799287

65. Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, et al. FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Metastatic Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. Oncologist. 2018;23(6):740–5. doi: 10.1634/theoncologist.2017-0642 29438093

66. Ou SH, Kwak EL, Siwak-Tapp C, Dy J, Bergethon K, Clark JW, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6. doi: 10.1097/JTO.0b013e31821528d3 21623265

67. Nagano T, Tachihara M, Nishimura Y. Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells. 2018;7(11).

68. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin Cancer Res. 2018;24(13):3097–107. doi: 10.1158/1078-0432.CCR-17-2310 29506987

Článek vyšel v časopise


2019 Číslo 12