On-site blood culture incubation shortens the time to knowledge of positivity and microbiological results in septic patients

Autoři: Julika Schwarzenbacher aff001;  Sven-Olaf Kuhn aff001;  Marcus Vollmer aff002;  Christian Scheer aff001;  Christian Fuchs aff001;  Sebastian Rehberg aff003;  Veronika Balau aff004;  Klaus Hahnenkamp aff001;  Jürgen A. Bohnert aff005;  Matthias Gründling aff001
Působiště autorů: Department of Anesthesiology, University Hospital of Greifswald, Greifswald, Germany aff001;  Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany aff002;  Department of Anesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, Bielefeld, Germany aff003;  IMD Labor Greifswald, MVZ Labor Greifswald GmbH, Greifswald, Germany aff004;  Friedrich Loeffler Institute of Microbiology, University Hospital Greifswald, Greifswald, Germany aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225999



To determine whether on-site incubation of blood cultures at the intensive care unit (ICU) improves not only the time to incubation but also time to positivity, time to knowledge of positivity and time to results (identification and antibiotic susceptibility testing).


This observational single-centre study in ICU patients with severe sepsis and septic shock investigated the impact of blood culture incubation immediately on-site at the ICU (ICU group) by comparison with traditional processing in a remote laboratory (LAB group) on different time intervals of blood culture diagnostics from obtaining blood to clinician notification of final result. The effect of on-site incubation was evaluated in Kaplan-Meier estimates for the time to positivity, time to knowledge of positivity and time to microbiological results and a linear mixed model was built.


A total of 3,549 blood culture sets from 657 ICU patients were analysed: 2,381 in the LAB group and 1,168 in the ICU group. Overall, 660 (18.6%) blood culture sets were positive and 2,889 (81.4%) sets remained negative. On-site incubation was associated with reduced time to knowledge of positivity (46.9 h [CI 43.4–50.8 h] vs. 28.0 h [CI 23.6–32.2 h], p < 0.001) and reduced time to result (61.4 h [CI 58.4–64.8 h] vs. 42.1 h [CI 39.1–47.5 h], p < 0.001). In blood cultures processed instantaneously at the ICU compared to incubation in the remote laboratory within 4 h, the time to microbiological result was significantly reduced by 8.5 h (p < 0.001). Pre-existing anti-infective therapy had no significant impact on diagnostic time intervals.


Instantaneous incubation of blood cultures in the ICU compared to incubation in a remote laboratory significantly improves time to knowledge to positivity and time to result. These effects are even more pronounced during off-hours of the microbiological laboratory. The results underline the importance of 24/7 diagnostics to provide round-the-clock processing of blood culture samples in patients with sepsis and septic shock and an immediate to communication of the results to the clinicians.

Klíčová slova:

Antibiotics – Blood – Diagnostic medicine – Intensive care units – Microbiology – Respiratory infections – Sepsis – Severe sepsis


1. Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. The Clinical Significance of Positive Blood Cultures: A Comprehensive Analysis of 500 Episodes of Bacteremia and Fungemia in Adults. I. Laboratory and Epidemiologic Observations. Rev Infect Dis. 1983;5: 35–53. doi: 10.1093/clinids/5.1.35 6828811

2. Schønheyder HC, Højbjerg T. The impact of the first notification of positive blood cultures on antibiotic therapy. A one-year survey. APMIS. 1995;103: 37–44. doi: 10.1111/j.1699-0463.1995.tb01077.x 7695890

3. Bouza E, Sousa D, Muñoz P, Rodríguez-Créixems M, Fron C, Lechuz JG. Bloodstream infections: a trial of the impact of different methods of reporting positive blood culture results. CLIN INFECT DIS. 2004;39: 1161–1169. doi: 10.1086/424520 15486840

4. Bates DW, Cook EF, Goldman L, Lee TH. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med. 1990;113: 495–500. 2393205

5. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995;273: 117–123. 7799491

6. Bates DW, Sands K, Miller E, Lanken PN, Hibberd PL, Graman PS, et al. Predicting bacteremia in patients with sepsis syndrome. Academic Medical Center Consortium Sepsis Project Working Group. J Infect Dis. 1997;176: 1538–1551. doi: 10.1086/514153 9395366

7. Roth A, Wiklund AE, Pålsson AS, Melander EZ, Wullt M, Cronqvist J, et al. Reducing blood culture contamination by a simple informational intervention. Journal of Clinical Microbiology. American Society for Microbiology; 2010;48: 4552–4558. doi: 10.1128/JCM.00877-10 20881178

8. SepNet Critical Care Trials Group. Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study. Intensive Care Med. 2016;42: 1980–1989. doi: 10.1007/s00134-016-4504-3 27686355

9. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev. 2010;23: 235–251. doi: 10.1128/CMR.00043-09 20065332

10. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine. 2017. pp. 486–552. doi: 10.1097/CCM.0000000000002255 28098591

11. Venturelli C, Righi E, Borsari L, Aggazzotti G, Busani S, Mussini C, et al. Impact of Pre-Analytical Time on the Recovery of Pathogens from Blood Cultures: Results from a Large Retrospective Survey. Calderaro A, editor. PLoS ONE. 2017;12: e0169466–11. doi: 10.1371/journal.pone.0169466 28046040

12. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine. 2006;34: 1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9 16625125

13. Whiles BB, Deis AS, Simpson SQ. Increased Time to Initial Antimicrobial Administration Is Associated With Progression to Septic Shock in Severe Sepsis Patients. Critical Care Medicine. 2017;45: 623. doi: 10.1097/CCM.0000000000002262 28169944

14. Pardo J, Klinker KP, Borgert SJ, Trikha G, Rand KH, Ramphal R. Time to positivity of blood cultures supports antibiotic de-escalation at 48 hours. Ann Pharmacother. 2014;48: 33–40. doi: 10.1177/1060028013511229 24259644

15. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernández-Delgado E, Herrera-Melero I, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014;40: 32–40. doi: 10.1007/s00134-013-3077-7 24026297

16. Schmitz RPH, Keller PM, Baier M, Hagel S, Pletz MW, Brunkhorst FM. Quality of blood culture testing—a survey in intensive care units and microbiological laboratories across four European countries. Crit Care. 2013;17: R248. doi: 10.1186/cc13074 24144084

17. Scheer CS, Fuchs C, Kuhn S-O, Vollmer M, Rehberg S, Friesecke S, et al. Quality Improvement Initiative for Severe Sepsis and Septic Shock Reduces 90-Day Mortality: A 7.5-Year Observational Study. Critical Care Medicine. 2017;45: 241–252. doi: 10.1097/CCM.0000000000002069 27661863

18. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. 1992. pp. 1644–1655.

19. Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC. Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. Journal of Clinical Microbiology. 2009;47: 3520–3523. doi: 10.1128/JCM.01092-09 19710262

20. Weinbren MJ, Collins M, Heathcote R, Umar M, Nisar M, Ainger C, et al. Optimization of the blood culture pathway: a template for improved sepsis management and diagnostic antimicrobial stewardship. J Hosp Infect. 2018;98: 232–235. doi: 10.1016/j.jhin.2017.12.023 29309813

21. Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC. Needle-to-incubator transport time: logistic factors influencing transport time for blood culture specimens. Journal of Clinical Microbiology. 2009;47: 819–822. doi: 10.1128/JCM.01829-08 19129412

22. Saito T, Iinuma Y, Takakura S, Nagao M, Matsushima A, Shirano M, et al. Delayed insertion of blood culture bottles into automated continuously monitoring blood culture systems increases the time from blood sample collection to the detection of microorganisms in bacteremic patients. J Infect Chemother. 2009;15: 49–53. doi: 10.1007/s10156-008-0664-6 19280302

23. Rönnberg C, Mildh M, Ullberg M, Özenci V. Transport time for blood culture bottles: underlying factors and its consequences. Diagnostic Microbiology and Infectious Disease. 2013;76: 286–290. doi: 10.1016/j.diagmicrobio.2013.03.031 23680239

24. Dreyer AW. Blood Culture Systems: From Patient to Result. Sepsis—An Ongoing and Significant Challenge. IntechOpen; 2012. doi: 10.5772/50139

25. Lamy B. Reprint of: Blood culture time-to-positivity: making use of the hidden information. Clin Microbiol Infect. 2019;25: 399–402. doi: 10.1016/j.cmi.2019.03.005 30898587

26. Janapatla RP, Yan J-J, Chien M-L, Chen H-M, Wu H-M, Wu J-J. Effect of Overnight Storage of Blood Culture Bottles on Bacterial Detection Time in the BACTEC 9240 Blood Culture System. Journal of Microbiology, Immunology and Infection. 2010;43: 126–132. doi: 10.1016/S1684-1182(10)60020-5

27. Microbiology HIASF, Washington, DC, 1992. Interpretation of aerobic bacterial growth on primary culture media, Clinical microbiology procedures handbook, vol. 1 p. 1.61–1.67. doi: 10.1128/9781555817435

28. Scheer CS, Fuchs C, Gründling M, Vollmer M, Bast J, Bohnert JA, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. Clinical Microbiology and Infection. 2019;25: 326–331. doi: 10.1016/j.cmi.2018.05.016 29879482

29. Gehring T, Kim H, Hoerauf A, Buechler C. A prospective study on the effect of time-shifted telephone reporting of blood culture microscopy. Eur J Clin Microbiol Infect Dis. 2019;38: 973–975. doi: 10.1007/s10096-019-03544-9 30911927

30. Pruinelli L, Westra BL, Yadav P, Hoff A, Steinbach M, Kumar V, et al. Delay Within the 3-Hour Surviving Sepsis Campaign Guideline on Mortality for Patients With Severe Sepsis and Septic Shock. Critical Care Medicine. 2018;46: 500–505. doi: 10.1097/CCM.0000000000002949 29298189

31. Towns ML, Jarvis WR, Hsueh P-R. Guidelines on blood cultures. J Microbiol Immunol Infect. 2010;43: 347–349. doi: 10.1016/S1684-1182(10)60054-0 20688297

32. Idelevich EA, Seifert H, Sundqvist M, Scudeller L, Amit S, Balode A, et al. Microbiological diagnostics of bloodstream infections in Europe-an ESGBIES survey. Clin Microbiol Infect. 2019;25: 1399–1407. doi: 10.1016/j.cmi.2019.03.024 30980927

33. Schwetz I, Hinrichs G, Reisinger EC, Krejs GJ, Olschewski H, Krause R. Delayed processing of blood samples influences time to positivity of blood cultures and results of Gram stain-acridine orange leukocyte Cytospin test. Journal of Clinical Microbiology. 2007;45: 2691–2694. doi: 10.1128/JCM.00085-07 17537945

34. Meda M, Clayton J, Varghese R, Rangaiah J, Grundy C, Dashti F, et al. What are the critical steps in processing blood cultures? A prospective audit evaluating current practice of reporting blood cultures in a centralised laboratory serving secondary care hospitals. J Clin Pathol. 2017;70: 361–366. doi: 10.1136/jclinpath-2016-204091 27864449

35. Sikkens JJ, Möhlmann MC, Peerbooms PG, Lettinga KD, Peters EJG, Kramer MHH, et al. The impact of laboratory closing times on delay of adequate therapy in blood stream infections. Neth J Med. 2018;76: 351–357. 30362944

36. Morton B, Nagaraja S, Collins A, Pennington SH, Blakey JD. A Retrospective Evaluation of Critical Care Blood Culture Yield–Do Support Services Contribute to the “Weekend Effect?” Lazzeri C, editor. PLoS ONE. 2015;10: e0141361–10. doi: 10.1371/journal.pone.0141361 26492559

37. Akan OA, Yildiz E. Comparison of the effect of delayed entry into 2 different blood culture systems (BACTEC 9240 and BacT/ALERT 3D) on culture positivity. Diagnostic Microbiology and Infectious Disease. 2006;54: 193–196. doi: 10.1016/j.diagmicrobio.2005.09.016 16427242

38. Lehmann LE, Alvarez J, Hunfeld K-P, Goglio A, Kost GJ, Louie RF, et al. Potential clinical utility of polymerase chain reaction in microbiological testing for sepsis. Critical Care Medicine. 2009;37: 3085–3090. doi: 10.1097/CCM.0b013e3181b033d7 19633541

39. Bloos F, Sachse S, Kortgen A, Pletz MW, Lehmann M, Straube E, et al. Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. Salluh JIF, editor. PLoS ONE. 2012;7: e46003. doi: 10.1371/journal.pone.0046003 23029360

40. Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, et al. Improved Sensitivity for Molecular Detection of Bacterial and Candida Infections in Blood. Gilligan PH, editor. Journal of Clinical Microbiology. 2014;52: 3164–3174. doi: 10.1128/JCM.00801-14 24951806

41. Vincent J-L, Brealey D, Libert N, Abidi NE, O’Dwyer M, Zacharowski K, et al. Rapid Diagnosis of Infection in the Critically Ill, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections*. Critical Care Medicine. 2015;43: 2283–2291. doi: 10.1097/CCM.0000000000001249 26327198

Článek vyšel v časopise


2019 Číslo 12