Removal of an established invader can change gross primary production of native macroalgae and alter carbon flow in intertidal rock pools

Autoři: Francesca Rossi aff001;  Rosa M. Viejo aff002;  Linney Duarte aff002;  Fatima Vaz-Pinto aff003;  Ignacio Gestoso aff004;  Celia Olabarria aff005
Působiště autorů: Université Côte d'Azur, CNRS, UMR7035 ECOSEAS, Nice, France aff001;  Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain aff002;  MARE–Marine and Environmental Sciences Centre, Caniçal, Madeira Island, Portugal aff003;  IIMAR/CIMAR,Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal aff004;  Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias del Mar, Universidade de Vigo, Vigo, Spain aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: 10.1371/journal.pone.0217121


The impact of invasive species on recipient communities can vary with environmental context and across levels of biological complexity. We investigated how an established invasive seaweed species affected the biomass, eco-physiology, carbon and nitrogen storage capacity of native seaweeds at sites with a different environmental setting due to a persistent upwelling in northern Spain. We removed the invasive Japanese wireweed Sargassum muticum from intertidal rock pools once every month during a one-year period and used an in-situ stable isotope pulse-chase labeling to estimate gross primary production (GPP), nitrogen uptake rate, 13C-carbon and 15N-nitrogen storage capacities. Following the addition of 13C-enriched bicarbonate and 15N-enriched nitrate to the seawater in the rock pools during the period of the low tide, we sampled macroalgal thalli at incoming tide to determine label uptake rate. After four days, we sampled macroalgal assemblages to determine both label storage capacity and biomass. After one year of removal there was no change in the macroalgal assemblage. However, both the GPP and 13C-carbon storage capacity were higher in the turf-forming Corallina spp. and, sometimes, in the canopy-forming Bifurcaria bifurcata. Nitrogen uptake rate followed similar, but more variable results. Although S. muticum inhibited carbon storage capacity of native species, the assemblage-level 13C-carbon storage was similar in the S. muticum—removed and control rock pools because the presence of the invasive species compensated for the functional loss of native species, particularly at sites where it was most abundant. No obvious effects were observed in relation to the environmental setting. Overall, the effect of the invasive S. muticum on carbon flow appeared to be mediated both by the effects on resource-use efficiency of native species and by its own biomass. Integrating physiological and assemblage-level responses can provide a broad understanding of how invasive species affect recipient communities and ecosystem functioning.

Klíčová slova:

Algae – Analysis of variance – Biomass – Ecosystem functioning – Invasive species – Sea water – Seaweed – Tides


1. Vitousek PM. Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies. Oikos. 1990;57: 7–13. doi: 10.2307/3565731

2. Simberloff D, Parker IM, Windle PN. Introduced species policy, management, and future research needs. Front Ecol Environ. 2005;3: 12–20. doi: 10.1890/1540-9295(2005)003[0012:ISPMAF]2.0.CO;2

3. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol. 2013;28: 58–66. doi: 10.1016/j.tree.2012.07.013 22889499

4. Guy-Haim T, Lyons DA, Kotta J, Ojaveer H, Queirós AM, Chatzinikolaou E, et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis. Glob Change Biol. 2018;24: 906–924. doi: 10.1111/gcb.14007 29211336

5. Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett. 2011;14: 702–708. doi: 10.1111/j.1461-0248.2011.01628.x 21592274

6. Pysek P, Jarosik V, Hulme PE, Pergl J, Hejda M, Schaffner U, et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol. 2012;18: 1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x

7. Davidson A, Jennions M, Nicotra A. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett. 2011;14: 419–431. doi: 10.1111/j.1461-0248.2011.01596.x 21314880

8. Hulme PE, Pysek P, Jarosik V, Pergl J, Schaffner U, Vila M. Bias and error in understanding plant invasion impacts. Trends Ecol Evol. 2013;28: 212–218. doi: 10.1016/j.tree.2012.10.010 23153723

9. Berthon K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol Invasions. 2015;17: 2199–2211. doi: 10.1007/s10530-015-0874-7

10. Ramsay-Newton C, Drouin A, Hughes AR, Bracken MES. Species, community, and ecosystem-level responses following the invasion of the red alga Dasysiphonia japonica to the western North Atlantic Ocean. Biol Invasions. 2017;19: 537–547. doi: 10.1007/s10530-016-1323-y

11. Stachowicz J, Terwin J, Whitlatch R, Osman R. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci U S A. 2002;99: 15497–15500. doi: 10.1073/pnas.242437499 12422019

12. Walther GR, Roques A, Hulme PE, Sykes MT, Pysek P, Kuhn I, et al. Alien species in a warmer world: risks and opportunities. Trends Ecol Evol. 2009;24: 686–693. doi: 10.1016/j.tree.2009.06.008 19712994

13. Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, et al. Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos. 2013;122: 1065–1079. doi: 10.1111/j.1600-0706.2012.20825.x

14. Vye SR, Emmerson MC, Arenas F, Dick JTA, O’Connor NE. Stressor intensity determines antagonistic interactions between species invasion and multiple stressor effects on ecosystem functioning. Oikos. 2015;124: 1005–1012. doi: 10.1111/oik.01583

15. Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kuhn I, et al. A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biol. 2014;12. doi: 10.1371/journal.pbio.1001850 24802715

16. Reichard M, Douda K, Przybylski M, Popa OP, Karbanova E, Matasova K, et al. Population-specific responses to an invasive species. Proc R Soc B-Biol Sci. 2015;282: 167–174. doi: 10.1098/rspb.2015.1063 26180070

17. Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 2008;177: 706–714. doi: 10.1111/j.1469-8137.2007.02290.x 18042198

18. Schramski JR, Dell AI, Grady JM, Sibly RM, Brown JH. Metabolic theory predicts whole-ecosystem properties. Proc Natl Acad Sci USA. 2015;112: 2617–2622. doi: 10.1073/pnas.1423502112 25624499

19. Chan FT, Briski E. An overview of recent research in marine biological invasions. Mar Biol. 2017;164: 121. doi: 10.1007/s00227-017-3155-4 28579642

20. Eno NC. Non-native marine species in British waters: Effects and controls. Aquat Conserv-Mar Freshw Ecosyst. 1996;6: 215–228. doi: 10.1002/(SICI)1099-0755(199612)6:4%3C215::AID-AQC191%3E3.0.CO;2-Q

21. Nyberg CD, Wallentinus I. Can species traits be used to predict marine macroalgal introductions? Biol Invasions. 2005;7: 265–279. doi: 10.1007/s10530-004-0738-z

22. Schaffelke B, Hewitt CL. Impacts of introduced seaweeds. Bot Mar. 2007;50: 397–417. doi: 10.1515/bot.2007.044

23. Thomsen MS, Wernberg T, South PM, Schiel DR. To include or not to include (the invader in community analyses)? That is the question. Biol Invasions. 2016;18: 1515–1521. doi: 10.1007/s10530-016-1102-9

24. Pérez-Cirera JL, Cremades J, Barbara I. Precisiones sistemáticas y sinecológicas sobre algunas algas nuevas para Galicia o para las costas atlánticas de la Península Ibérica. An Jardin Bot Madrid. 1989;46: 35–45.

25. Rull Lluch J, Gomez Garreta A, Ribeira MA, Barcelo MC. Mapas de distribución de algas marinas de la Península Ibérica e Islas Baleares. VII. Cystoseira C. Agardh (Grupo C. baccata) y Sargassum C. Agardh (S. muticum y S. vulgare). Bot Complut. 1994;19: 131–138.

26. Cacabelos E, Olabarria C, Viejo RM, Rubal M, Veiga P, Incera M, et al. Invasion of Sargassum muticum in intertidal rockpools: Patterns along the Atlantic Iberian Peninsula. Mar Environ Res. 2013;90: 18–26. doi: 10.1016/j.marenvres.2013.05.008 23764086

27. Engelen AH, Serebryakova A, Ang P, Britton-Simmons K, Mineur F, Pedersen MF, et al. Circumglobal invasion by the brown seaweed Sargassum muticum. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, editors. Oceanogr Mar Biol. 2015. pp. 81–126. Available: <Go to ISI>://WOS:000364174100003

28. Tuya F, Cacabelos E, Duarte P, Jacinto D, Castro JJ, Silva T, et al. Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate. Mar Ecol Prog Ser. 2012;466: 9–19. doi: 10.3354/meps09941

29. Botas J, Fernandez E, Bode A, Anadon R. A persistent upwelling off the Central Cantabrian Coast (Bay of Biscay). Estuar Coast Shelf Sci. 1990;30: 185–199. doi: 10.1016/0272-7714(90)90063-W

30. Llope M, Anadon R, Viesca L, Quevedo M, Gonzalez-Quiros R, Stenseth NC. Hydrography of the southern Bay of Biscay shelf-break region: Integrating the multiscale physical variability over the period 1993–2003. J Geophys Res-Oceans. 2006;111. doi: 10.1029/2005jc002963

31. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. Stable isotopes in plant ecology. Annu Rev Ecol Syst. 2002;33: 507–559.

32. Werner C, Schnyder H, Cuntz M, Keitel C, Zeeman MJ, Dawson TE, et al. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences. 2012;9: 3083–3111. doi: 10.5194/bg-9-3083-2012

33. Middelburg JJ. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences. 2014;11: 2357–2371. doi: 10.5194/bg-11-2357-2014

34. Mateo MA, Renom P, Hemminga MA, Peene J. Measurement of seagrass production using the 13C stable isotope compared with classical O2 and 14C methods. Mar Ecol Prog Ser. 2001;223: 157–165. doi: 10.3354/meps223157

35. Miller HL, Dunton KH. Stable isotope (C13) and O2 micro-optode alternatives for measuring photosythesis in seaweeds. Mar Ecol Prog Ser. 2007;329: 85–97. doi: 10.3354/meps329085

36. Naldi M, Wheeler PA. 15N measurements of ammonium and nitrate uptake by Ulva fenestrata (chlorophyta) and Gracilaria pacifica (Rhodophyta): Comparison of net nutrient disappearance, release of ammonium and nitrate, and 15N accumulation in algal tissue. J Phycol. 2002;38: 135–144. doi: 10.1046/j.1529-8817.2002.01070.x

37. Wang C, Lei AP, Zhou K, Hu ZY, Hao WL, Yang JD. Growth and Nitrogen Uptake Characteristics Reveal Outbreak Mechanism of the Opportunistic Macroalga Gracilaria tenuistipitata. PLoS ONE. 2014;9. doi: 10.1371/journal.pone.0108980 25299123

38. Bodey W, Bearhop S, McDonald RA. Invasions and stable isotope analysis–informing ecology and management. In: Veitch CR, Clout MN, Towns DR, editors. Island invasives: eradication and management. Switzerland: IUNC Gland; 2011. pp. 148–151.

39. Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J. Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology. PLoS ONE. 2012;7. doi: 10.1371/journal.pone.0031757 22363724

40. Stephens TA, Hepburn CD. A kelp with integrity: Macrocystis pyrifera prioritises tissue maintenance in response to nitrogen fertilisation. Oecologia. 2016;182: 71–84. doi: 10.1007/s00442-016-3641-2 27170330

41. Rossi F, Vos M, Middelburg J. Species identity, diversity and microbial carbon flow in reassembling macrobenthic communities. Oikos. 2009; 503–512. doi: 10.1111/j.1600-0706.2009.17112.x

42. Rossi F, Incera M, Callier M, Olabarria C. Effects of detrital non-native and native macroalgae on the nitrogen and carbon cycling in intertidal sediments. Mar Biol. 2011;158: 2705–2715. doi: 10.1007/s00227-011-1768-6

43. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26: 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x

44. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R [Internet]. USA: Springer, New York, NY; 2009. Available: doi: 10.1007/978-0-387-87458-6

45. Crawley MJ. The R book. 2nd ed. Wiley; 2009.

46. Viana IG, Bode A. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability. Sci Total Environ. 2013;443: 887–895. doi: 10.1016/j.scitotenv.2012.11.065 23247291

47. Armitage CS, Husa V, Petelenz-Kurdziel EA, Sjotun K. Growth and competition in a warmer ocean: a field experiment with a non-native and two native habitat-building seaweeds. Mar Ecol Prog Ser. 2017;573: 85–99. doi: 10.3354/meps12161

48. Pedersen MF, Borum J. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser. 1996;142: 261–272. doi: 10.3354/meps142261

49. Hurd CL, Harrison PJ, Biscoff K, Lobban CS. Seaweed Ecology and Physiology. Cambridge University Press; 2014.

50. Salvaterra T, Green DS, Crowe TP, O’Gorman EJ. Impacts of the invasive alga Sargassum muticum on ecosystem functioning and food web structure. Biol Invasions. 2013;15: 2563–2576. doi: 10.1007/s10530-013-0473-4

51. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S. Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B-Biol Sci. 2003;270: 775–781. doi: 10.1098/rspb.2003.2327 12737654

52. Guenther RJ, Martone PT. Physiological performance of intertidal coralline algae during a simulated tidal cycle. J Phycol. 2014;50: 310–321. doi: 10.1111/jpy.12161 26988188

53. Egilsdottir H, Olafsson J, Martin S. Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongata (Corallinales, Rhodophyta) from intertidal rock pools. Eur J Phycol. 2016;51: 59–70. doi: 10.1080/09670262.2015.1101165

54. Tait LW. Impacts of natural and manipulated variations in temperature, pH and light on photosynthetic parameters of coralline-kelp assemblages. J Exp Mar Biol Ecol. 2014;454: 1–8. doi: 10.1016/j.jembe.2014.01.016

55. Cornwall C, Pilditch C, Hepburn C, Hurd C. Canopy macroalgae influence understorey corallines’ metabolic control of near-surface pH and oxygen concentration. Mar Ecol Prog Ser. 2015;525: 81–95. doi: 10.3354/meps11190

56. Wernberg T, Thomsen MS, Staehr PA, Pedersen MF. Comparative phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark. Bot Mar. 2001;44: 31–39. doi: 10.1515/bot.2001.005

57. Sanchez I, Fernandez C, Arrontes J. Long-term changes in the structure of intertidal assemblages after invasion by Sargassum muticum (Phaeophyta). J Phycol. 2005;41: 942–949. doi: 10.1111/j.1529-8817.2005.00122.x

58. Viejo RM. The effects of colonization by Sargassum muticum on tidepool macroalgal assemblages. J Mar Biol Assoc U K. 1997;77: 325–340. doi: 10.1017/s0025315400071708

59. Vaz-Pinto F, Olabarria C, Arenas F. Ecosystem functioning impacts of the invasive seaweed Sargassum muticum (Fucales, Phaeophyceae). J Phycol. 2014;50: 108–116. doi: 10.1111/jpy.12136 26988012

60. Flombaum P, Aragon R, Chaneton EJ. A role for the sampling effect in invaded ecosystems. Oikos. 2017;126: 1229–1232. doi: 10.1111/oik.04221

61. Vaz-Pinto F, Martinez B, Olabarria C, Arenas F. Neighbourhood competition in coexisting species: The native Cystoseira humilis vs the invasive Sargassum muticum. J Exp Mar Biol Ecol. 2014;454: 32–41. doi: 10.1016/j.jembe.2014.02.001

Článek vyšel v časopise


2019 Číslo 12